PING
0.9
Statistical data handling and processing in production environment
|
Legacy _"EUVALS"_-based code that calculates: _(i)_ as many EU aggregates of _(ii)_ as many indicator over _(iii)_ as many years, as desired, possibly imputing data for missing countries from past years.
indicators
: list of indicators, i.e. names of the datasets that store the indicators; aggregates will be estimated over the aggregates
areas and during the years
period;aggregates
: list of geographical areas, e.g. EU28, EA, ...;years
: list of year(s) of interest;geo2geo
: (option) list of correspondance rule that will enable you to copy the observations of a given aggregate into another one; it will take the form ((ogeo1=igeo1) (ogeo1=ogeo2) ...)
where all observations igeo1
are copied (while preserved) to ogeo1
in the output table, ibid for igeo2
and ogeo2
, etc...; note that the outermost parentheses (...)
are not necessary; default: geo2geo
is empty, i.e. no copy is operated; see %obs_geocopy for more details;max_yback
: (option) number of years used for imputation of missing data; it tells how to look backward in time, i.e. consider the max_yback
years prior to the estimated year; see %silc_agg_compute for further details; default: max_yback=0
;thr_min
: (option) value (in range [0,1]) of (lower acceptable) the threshold used to compare currently available population to global population; see %silc_agg_compute for further details; default: thr_min=0.7
;thr_cum
: (option) value (in range [0,1]) of the (lower acceptable) threshold used to compare the cumulated available population over max_yback
years to global population; see %silc_agg_compute; default: thr_cum=0
;ilib
: (option) input dataset library; default (not passed or ' '): ilib=WORK
;olib
: (option) input dataset library; default (not passed or ' '): olib=WORK
.For each input indicators in indicators
, update the corresponding table in ilib
with all aggregated values and store it (with the same name) in olib
.
Considering the following PEPS01
indicator table:
geo | time | age | sex | unit | ivalue | flag | unrel | n | ntot | totwgh |
---|---|---|---|---|---|---|---|---|---|---|
AT | 2015 | TOTAL | T | PC | 18.3001 | 0 | 2221 | 13213 | 8476450.56 | |
BE | 2015 | TOTAL | T | PC | 21.0982 | 0 | 3103 | 14209 | 11073760.02 | |
BG | 2015 | TOTAL | T | PC | 41.3311 | 0 | 5155 | 12031 | 7214208.95 | |
BG | 2016 | TOTAL | T | PC | 40.3672 | b | 0 | 7342 | 17788 | 7159945.97 |
CH | 2015 | TOTAL | T | PC | 18.1994 | 0 | 2474 | 17164 | 8107904 | |
CY | 2015 | TOTAL | T | PC | 28.9414 | 0 | 3240 | 11966 | 843221 | |
CZ | 2015 | TOTAL | T | PC | 13.9887 | 0 | 2184 | 17714 | 10324059.2 | |
DE | 2015 | TOTAL | T | PC | 19.9646 | 0 | 4742 | 26379 | 80556397 | |
DK | 2015 | TOTAL | T | PC | 17.7494 | 0 | 1197 | 13969 | 5626658.53 | |
EE | 2015 | TOTAL | T | PC | 24.2108 | 0 | 3431 | 14558 | 1300279 | |
EL | 2015 | TOTAL | T | PC | 35.7038 | 0 | 12145 | 34465 | 10723089 | |
ES | 2015 | TOTAL | T | PC | 28.65 | 0 | 8776 | 32380 | 45986380 | |
ES | 2016 | TOTAL | T | PC | 27.9123 | 0 | 9158 | 36380 | 45953168 | |
FI | 2015 | TOTAL | T | PC | 16.7624 | 0 | 3196 | 26433 | 5390568.68 | |
FI | 2016 | TOTAL | T | PC | 16.5823 | 0 | 3018 | 25983 | 5404487.99 | |
FR | 2015 | TOTAL | T | PC | 17.6896 | 0 | 4610 | 26645 | 62453275.37 | |
HR | 2015 | TOTAL | T | PC | 29.0582 | 0 | 5538 | 17177 | 4184976 | |
HU | 2015 | TOTAL | T | PC | 28.2079 | 0 | 5764 | 18682 | 9695142 | |
IE | 2015 | TOTAL | T | PC | 26.0018 | 0 | 3568 | 13793 | 4641897.99 | |
IS | 2015 | TOTAL | T | PC | 12.9913 | 0 | 855 | 8604 | 316430 | |
IT | 2015 | TOTAL | T | PC | 28.7108 | 0 | 10404 | 42987 | 60843061.04 | |
LT | 2015 | TOTAL | T | PC | 29.3489 | 0 | 3077 | 11015 | 2921262 | |
LU | 2015 | TOTAL | T | PC | 18.4715 | 0 | 1723 | 8767 | 514254 | |
LV | 2015 | TOTAL | T | PC | 30.8766 | 0 | 4676 | 13923 | 1961234 | |
LV | 2016 | TOTAL | T | PC | 28.5005 | 0 | 4374 | 13864 | 1942760 | |
MK | 2015 | TOTAL | T | PC | 41.5739 | 0 | 5693 | 13458 | 2069751.38 | |
MT | 2015 | TOTAL | T | PC | 22.4401 | 0 | 2516 | 11252 | 420007.95 | |
NL | 2015 | TOTAL | T | PC | 16.375 | 0 | 2163 | 23338 | 16757719.39 | |
NO | 2015 | TOTAL | T | PC | 14.9751 | 0 | 1516 | 15699 | 5142181.91 | |
PL | 2015 | TOTAL | T | PC | 23.4404 | 0 | 8691 | 33652 | 37374543 | |
RO | 2015 | TOTAL | T | PC | 37.3783 | 0 | 6345 | 17411 | 19890447.12 | |
RS | 2015 | TOTAL | T | PC | 41.2957 | 0 | 7797 | 18270 | 7086011 | |
SI | 2015 | TOTAL | T | PC | 19.1585 | 0 | 4417 | 26150 | 2006985.22 | |
SK | 2015 | TOTAL | T | PC | 18.3874 | 0 | 2882 | 16181 | 5236123.99 | |
PT | 2015 | TOTAL | T | PC | 26.6478 | 0 | 6350 | 21965 | 10374822 | |
SE | 2015 | TOTAL | T | PC | 18.6015 | b | 0 | 1614 | 14249 | 9746194.26 |
CZ | 2016 | TOTAL | T | PC | 13.3016 | 0 | 2193 | 18964 | 10339778.6 | |
DK | 2016 | TOTAL | T | PC | 16.7469 | 0 | 1196 | 13846 | 5657944 | |
HU | 2016 | TOTAL | T | PC | 26.2791 | 0 | 5362 | 18809 | 9669282 | |
PT | 2016 | TOTAL | T | PC | 25.0922 | 0 | 7506 | 26565 | 10341330 | |
SK | 2016 | TOTAL | T | PC | 18.1111 | 0 | 3056 | 16507 | 5247463.13 | |
SI | 2016 | TOTAL | T | PC | 18.4238 | 0 | 4023 | 25637 | 2015471.69 | |
NO | 2016 | TOTAL | T | PC | 15.2872 | 0 | 1739 | 16899 | 5174830.98 | |
TR | 2015 | TOTAL | T | PC | 41.2995 | 0 | 36666 | 81048 | 76368972 | |
RS | 2016 | TOTAL | T | PC | 38.7272 | 0 | 7068 | 17720 | 7033451 | |
LT | 2016 | TOTAL | T | PC | 30.1481 | 0 | 3056 | 10905 | 2888558 | |
EE | 2016 | TOTAL | T | PC | 24.436 | 0 | 3578 | 15193 | 1302797 | |
PL | 2016 | TOTAL | T | PC | 21.9182 | 0 | 8089 | 32609 | 37508480.69 | |
UK | 2015 | TOTAL | T | PC | 23.4504 | 0 | 5259 | 21242 | 63954009 | |
UK | 2016 | TOTAL | T | PC | 22.184 | 0 | 5160 | 22205 | 64728438 | |
SE | 2016 | TOTAL | T | PC | 18.2622 | 0 | 1697 | 14072 | 9851017 | |
CH | 2016 | TOTAL | T | PC | 17.8124 | 0 | 2495 | 17881 | 8195862 | |
FR | 2016 | TOTAL | T | PC | 18.2425 | 0 | 4730 | 26647 | 62837901.62 | |
DE | 2016 | TOTAL | T | PC | 19.6926 | 0 | 4930 | 26803 | 81427111 | |
NL | 2016 | TOTAL | T | PC | 16.7216 | b | 0 | 3575 | 29559 | 16724232 |
HR | 2016 | TOTAL | T | PC | 27.9418 | 0 | 5980 | 19661 | 4149254 | |
MT | 2016 | TOTAL | T | PC | 20.0758 | 0 | 2225 | 10743 | 424831.04 | |
RO | 2016 | TOTAL | T | PC | 38.8253 | 0 | 6238 | 17355 | 19817899.94 | |
CY | 2016 | TOTAL | T | PC | 27.6947 | 0 | 3018 | 11236 | 844559 | |
EL | 2016 | TOTAL | T | PC | 35.5734 | 0 | 15508 | 44094 | 10651929 | |
BE | 2016 | TOTAL | T | PC | 20.7181 | 0 | 2963 | 13773 | 11269855.71 | |
IT | 2016 | TOTAL | T | PC | 29.9778 | 0 | 12337 | 48316 | 60500228.84 | |
IE | 2016 | TOTAL | T | PC | 24.2317 | 0 | 3261 | 13186 | 4683666.01 | |
LU | 2016 | TOTAL | T | PC | 19.8087 | b | 0 | 1986 | 10159 | 575993.71 |
AT | 2016 | TOTAL | T | PC | 17.9541 | 0 | 2072 | 13049 | 8590169.38 | |
MK | 2016 | TOTAL | T | PC | 41.1011 | 0 | 5970 | 14310 | 2072573.48 | |
DK | 2017 | TOTAL | T | PC | 17.1904 | 0 | 1205 | 12727 | 5697896 | |
HU | 2017 | TOTAL | T | PC | 25.578 | 0 | 5075 | 18591 | 9637338 |
then calling the macro:
will update that same table with the following estimated aggregate observations:
geo | time | age | sex | unit | ivalue | flag | unrel | n | ntot | totwgh |
---|---|---|---|---|---|---|---|---|---|---|
EU28 | 2016 | TOTAL | T | PC | 23.4893 | 0 | 137631 | 593908 | 502508553.3 | |
EU27 | 2016 | TOTAL | T | PC | 23.4522 | 0 | 131651 | 574247 | 498359299.3 | |
EA19 | 2016 | TOTAL | T | PC | 23.0942 | 0 | 943744 | 18599 | 333626513.1 | |
EU | 2016 | TOTAL | T | PC | 23.4893 | 0 | 137631 | 593908 | 502508553.3 | |
EA | 2016 | TOTAL | T | PC | 23.0942 | 0 | 943744 | 18599 | 333626513.1 | |
EU28 | 2015 | TOTAL | T | PC | 23.7865 | 0 | 128987 | 555746 | 500491026.3 | |
EU27 | 2015 | TOTAL | T | PC | 23.7420 | 1 | 234495 | 38569 | 496306050.3 | |
EA19 | 2015 | TOTAL | T | PC | 23.0593 | 0 | 872403 | 89619 | 332480788.2 | |
EU | 2015 | TOTAL | T | PC | 23.7865 | 0 | 128987 | 555746 | 500491026.3 | |
EA | 2015 | TOTAL | T | PC | 23.0593 | 0 | 872403 | 89619 | 332480788.2 |
since the aggregate EA19
needs to be estimated to fill in the EA
value as well.
Instead, it is also possible to run:
in order to estimate 2017 aggregates while most values are missing, so as to update the table with the following estimated aggregate observations:
geo | time | age | sex | unit | ivalue | flag | unrel | n | ntot | totwgh |
---|---|---|---|---|---|---|---|---|---|---|
EU28 | 2017 | TOTAL | T | PC | 23.4802 | e | 0 | 137353 | 592571 | 502516561.3 |
EU27 | 2017 | TOTAL | T | PC | 23.443 | e | 0 | 131373 | 572910 | 498367307.3 |
Run macro %_example_silc_agg_process
for more examples.
See %silc_agg_compute and %silc_EUvals for further details on effective computation.
%silc_agg_compute, %silc_EUvals, %silc_agg_list, %obs_geocopy, %ctry_select, %zone_to_ctry, %var_to_list.