synthetic_events
This module contains the SyntheticEvents class, which is responsible for generating the synthetic event data.
SyntheticEvents
Bases: Component
Class that generates the event synthetic data. It inherits from the Component abstract class.
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
|
add_cell_ids_to_locations(events_with_locations_df, cells_df, max_n_of_cells, seed)
staticmethod
Links cell IDs to locations in the events DataFrame.
This method performs a spatial join between the events and cells DataFrames to add cell IDs to each event. It first creates a buffer around each event location and finds cells that intersect with this buffer. It then calculates the distance from each event location to the cell and ranks the cells based on this distance. It keeps only the top 'max_n_of_cells' closest cells for each event.
The method also adds a random index to each event-cell pair and filters to keep only one pair per event, randomly selecting one of the closest cells for each event.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
events_with_locations_df
|
DataFrame
|
A DataFrame of events |
required |
cells_df
|
DataFrame
|
A DataFrame of cells |
required |
max_n_of_cells
|
int
|
The maximum number of closest cells to consider for each event. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: A DataFrame of events with cell IDs added. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
|
generate_different_location_duplicates(df)
Selects a subset of the previously generated data (syntactically clean data) and creates different location duplicates. If input has odd number of rows, one row is discarded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Dataframe of clean synthetic events. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: Dataframe with same different location duplicates. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
|
generate_erroneous_type_values(df)
Generates errors for sampled rows. Errors are custom defined, for instance a random string, or corrupt timestamp. Does not cast the columns to a different type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
dataframe that may have out of bound and null records. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: dataframe with erroneous rows, and possibly, with nulls and out of bound records. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
|
generate_errors(synth_df_raw)
Inputs a dataframe that contains synthetic records based on diaries. These records include locational errors, etc. This function only selects the clean generated records from previous steps. Generates errors for those clean records. Calls all error generation functions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
synth_df_raw
|
DataFrame
|
Data of raw and clean synthetic events. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: Dataframe, with erroneous records, according to probabilities defined in the configuration. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
|
generate_event_timestamps_for_moves(stays_sdf, event_freq_moves, cartesian_crs, seed)
staticmethod
Generates a DataFrame of event timestamps for movements between stays.
For each stay in the input DataFrame, this method generates a random number of timestamps equal to the time difference between the end of the current stay and the start of the next stay, divided by the event frequency for moves.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stays_sdf
|
DataFrame
|
A DataFrame of stays. |
required |
event_freq_moves
|
int
|
The frequency of events for movements. |
required |
cartesian_crs
|
int
|
The EPSG code of the Cartesian coordinate reference system to use for the geometries. |
required |
seed
|
int
|
The seed that determines the randomness of timestamp generation, and subsequent lat/lon generation. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: A DataFrame of event timestamps for movements. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
generate_event_timestamps_for_stays(stays_df, event_freq_stays, cartesian_crs, seed)
staticmethod
Generates a DataFrame of event timestamps for stays based on the event frequency for stays.
For each stay in the input DataFrame, this method calculates the time difference between the initial and final timestamps of the stay. It then generates a number of timestamps equal to this time difference divided by the event frequency for stays. Each timestamp is associated with the location of the stay.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stays_df
|
DataFrame
|
A DataFrame of stays. |
required |
event_freq_stays
|
int
|
The frequency of events for stays. |
required |
cartesian_crs
|
int
|
The EPSG code of the Cartesian coordinate reference system to use for the geometries. |
required |
seed
|
int
|
The seed for generating timestamps randomly. |
required |
Returns: pyspark.sql.DataFrame: A DataFrame of event timestamps for stays.
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
generate_location_errors(records_sdf, error_location_distance_max, error_location_distance_min, closest_cell_distance_max, cartesian_crs, seed)
staticmethod
Generates location errors for x and y coordinates of each record in the DataFrame.
This method adds a random location error to the x and y coordinates of each record in the input DataFrame. The location error is a random value between error_location_distance_min and error_location_distance_max, and is added or subtracted from the x and y coordinates based on a random sign.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
records_sdf
|
DataFrame
|
A DataFrame of records |
required |
error_location_distance_max
|
float
|
The maximum location error distance. |
required |
error_location_distance_min
|
float
|
The minimum location error distance. |
required |
closest_cell_distance_max
|
float
|
The maximum distance to the closest cell. |
required |
cartesian_crs
|
int
|
The EPSG code of the Cartesian coordinate reference system to use for the geometries. |
required |
seed
|
int
|
The seed for the random number generator. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame of records with location errors added to the x and y coordinates. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
|
generate_locations_for_moves(event_timestamps_df, cartesian_crs)
staticmethod
Generates locations for moves based on the event timestamps dataframe. Returns a dataframe, where for each move in the event timestamps dataframe a geometry column is added, representing the location of the move.
Performs interpolation along the line between the starting move point (previous stay point) and next move point (next stay point) using the randomly generated values in the column random_fraction_on_line.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
event_timestamps_df
|
DataFrame
|
The event timestamps dataframe. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: The event timestamps dataframe with the added geometry column. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
|
generate_nulls_in_mandatory_fields(df)
Generates null values in some fields of some rows based on configuration parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
clean synthetic data |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: synthetic records dataframe with nulls in some columns of some rows |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
|
generate_out_of_bounds_dates(df)
Transforms the timestamp column values to be out of bound of the selected period, based on probabilities from configuration. Only rows with non-null timestamp values can become altered here.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Dataframe of clean synthetic events. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: Data where some timestamp column values are out of bounds as per config. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
|
generate_records_with_non_existant_cell_ids(records_sdf, cells_sdf, seed)
staticmethod
Adds the cell_id column so that it will contain cell_ids that are not present in the cells_df dataframe, yet follow the format of a cell id.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
records_sdf
|
DataFrame
|
generated records |
required |
cells_sdf
|
DataFrame
|
cells dataframe |
required |
DataFrame
|
records with cell ids that are not present in the cells_df dataframe |
required |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
|
generate_same_location_duplicates(df)
Selects a subset of the previously generated data (syntactically clean data) and creates same location duplicates. If input has odd number of rows, one row is discarded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Dataframe of clean synthetic events. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: Dataframe with same location duplicates. |
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 |
|