Skip to content

synthetic_events

This module contains the SyntheticEvents class, which is responsible for generating the synthetic event data.

SyntheticEvents

Bases: Component

Class that generates the event synthetic data. It inherits from the Component abstract class.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
class SyntheticEvents(Component):
    """
    Class that generates the event synthetic data. It inherits from the Component abstract class.
    """

    COMPONENT_ID = "SyntheticEvents"

    def __init__(self, general_config_path: str, component_config_path: str):
        super().__init__(
            general_config_path=general_config_path,
            component_config_path=component_config_path,
        )

        self.seed = self.config.getint(self.COMPONENT_ID, "seed")
        self.event_freq_stays = self.config.getint(self.COMPONENT_ID, "event_freq_stays")
        self.event_freq_moves = self.config.getint(self.COMPONENT_ID, "event_freq_moves")
        self.closest_cell_distance_max = self.config.getint(self.COMPONENT_ID, "closest_cell_distance_max")
        self.closest_cell_distance_max_for_errors = self.config.getint(
            self.COMPONENT_ID, "closest_cell_distance_max_for_errors"
        )
        self.error_location_probability = self.config.getfloat(self.COMPONENT_ID, "error_location_probability")
        self.error_location_distance_min = self.config.getint(self.COMPONENT_ID, "error_location_distance_min")
        self.error_location_distance_max = self.config.getint(self.COMPONENT_ID, "error_location_distance_max")
        self.cartesian_crs = self.config.getint(self.COMPONENT_ID, "cartesian_crs")
        self.error_cell_id_probability = self.config.getfloat(self.COMPONENT_ID, "error_cell_id_probability")
        self.maximum_number_of_cells_for_event = self.config.getfloat(
            self.COMPONENT_ID, "maximum_number_of_cells_for_event"
        )

        self.mcc = self.config.getint(self.COMPONENT_ID, "mcc")
        self.mnc = self.config.get(self.COMPONENT_ID, "mnc")

        # Parameters for synthetic event errors generation (these are not locational errors)

        self.do_event_error_generation = self.config.getboolean(self.COMPONENT_ID, "do_event_error_generation")
        self.column_is_null_probability = self.config.getfloat(self.COMPONENT_ID, "column_is_null_probability")
        self.null_row_prob = self.config.getfloat(self.COMPONENT_ID, "null_row_probability")
        self.data_type_error_prob = self.config.getfloat(self.COMPONENT_ID, "data_type_error_probability")
        self.out_of_bounds_prob = self.config.getfloat(self.COMPONENT_ID, "out_of_bounds_probability")
        self.same_location_duplicate_prob = self.config.getfloat(
            self.COMPONENT_ID, "same_location_duplicates_probability"
        )
        self.different_location_duplicate_prob = self.config.getfloat(
            self.COMPONENT_ID, "different_location_duplicates_probability"
        )

        self.mandatory_columns = [i.name for i in BronzeEventDataObject.SCHEMA]
        self.error_generation_allowed_columns = set(self.mandatory_columns) - set(
            [ColNames.year, ColNames.month, ColNames.day]
        )

        self.order_output_by_timestamp = self.config.getboolean(self.COMPONENT_ID, "order_output_by_timestamp")

        self.data_period_start = datetime.strptime(
            self.config.get(self.COMPONENT_ID, "data_period_start"), "%Y-%m-%d"
        ).date()
        self.data_period_end = datetime.strptime(
            self.config.get(self.COMPONENT_ID, "data_period_end"), "%Y-%m-%d"
        ).date()

        self.data_period_dates = [
            self.data_period_start + timedelta(days=i)
            for i in range((self.data_period_end - self.data_period_start).days + 1)
        ]

    def initalize_data_objects(self):

        pop_diares_input_path = self.config.get(CONFIG_BRONZE_PATHS_KEY, "diaries_data_bronze")
        pop_diaries_bronze_event = BronzeSyntheticDiariesDataObject(self.spark, pop_diares_input_path)

        # Input for cell attributes
        network_data_input_path = self.config.get(CONFIG_BRONZE_PATHS_KEY, "network_data_bronze")

        cell_locations_bronze = BronzeNetworkDataObject(self.spark, network_data_input_path)

        self.input_data_objects = {
            BronzeSyntheticDiariesDataObject.ID: pop_diaries_bronze_event,
            BronzeNetworkDataObject.ID: cell_locations_bronze,
        }

        output_records_path = self.config.get(CONFIG_BRONZE_PATHS_KEY, "event_data_bronze")
        bronze_event = BronzeEventDataObject(self.spark, output_records_path)

        self.output_data_objects = {BronzeEventDataObject.ID: bronze_event}

    @get_execution_stats
    def execute(self):
        self.logger.info(f"Starting {self.COMPONENT_ID}...")
        self.read()

        for current_date in self.data_period_dates:

            self.logger.info(f"Processing diaries for {current_date.strftime('%Y-%m-%d')}")

            self.current_diaries = self.input_data_objects[BronzeSyntheticDiariesDataObject.ID].df.filter(
                (F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day)) == F.lit(current_date))
            )

            self.current_cells = (
                self.input_data_objects[BronzeNetworkDataObject.ID]
                .df.filter(
                    (
                        F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day))
                        == F.lit(current_date)
                    )
                )
                .select(
                    ColNames.cell_id,
                    ColNames.latitude,
                    ColNames.longitude,
                    ColNames.year,
                    ColNames.month,
                    ColNames.day,
                )
            )

            self.transform()
            self.write()

        self.logger.info(f"Finished {self.COMPONENT_ID}")

    def transform(self):

        pop_diaries_df = self.current_diaries
        cells_df = self.current_cells

        # Filtering stays to get the lat and lon of movement starting and end point
        stays_df = pop_diaries_df.filter(F.col(ColNames.activity_type) == "stay")

        move_events_df = self.generate_event_timestamps_for_moves(
            stays_df, self.event_freq_moves, self.cartesian_crs, self.seed
        )
        move_events_with_locations_df = self.generate_locations_for_moves(move_events_df, self.cartesian_crs)

        stay_events_df = self.generate_event_timestamps_for_stays(
            stays_df, self.event_freq_stays, self.cartesian_crs, self.seed
        )

        generated_stays_and_moves = stay_events_df.union(move_events_with_locations_df)

        # Add geometry column to cells
        cells_df = cells_df.withColumn(
            "cell_geometry",
            STF.ST_Transform(
                STC.ST_Point(F.col(ColNames.longitude), F.col(ColNames.latitude)),
                F.lit("EPSG:4326"),
                F.lit(f"EPSG:{self.cartesian_crs}"),
            ),
        ).select(ColNames.cell_id, "cell_geometry")

        # 1) From the clean records, sample records for location errors
        sampled_records = generated_stays_and_moves.sample(self.error_location_probability, self.seed)
        generated_stays_and_moves = generated_stays_and_moves.subtract(sampled_records)
        generated_stays_and_moves = generated_stays_and_moves.withColumn(
            ColNames.loc_error, F.lit(None).cast(FloatType())
        )

        records_with_location_errors = self.generate_location_errors(
            sampled_records,
            self.error_location_distance_max,
            self.error_location_distance_min,
            self.closest_cell_distance_max_for_errors,
            self.cartesian_crs,
            self.seed,
        )

        # 2) From the clean records, sample records for erroneous cell id creation
        sampled_records = generated_stays_and_moves.sample(self.error_cell_id_probability, self.seed)
        records_with_cell_id_errors = self.generate_records_with_non_existant_cell_ids(
            sampled_records, cells_df, self.seed
        )

        generated_stays_and_moves = generated_stays_and_moves.subtract(sampled_records)
        generated_stays_and_moves = generated_stays_and_moves.withColumn(
            "closest_cell_distance_max", F.lit(self.closest_cell_distance_max)
        )

        # Label error rows so that these would be ignored in syntactic error generation
        records_with_location_errors = records_with_location_errors.withColumn("is_modified", F.lit(True))
        records_with_cell_id_errors = records_with_cell_id_errors.withColumn("is_modified", F.lit(True))
        generated_stays_and_moves = generated_stays_and_moves.withColumn("is_modified", F.lit(False))

        # 3) Link a cell id to each location

        records_sdf = generated_stays_and_moves.union(records_with_location_errors)

        records_sdf = self.add_cell_ids_to_locations(
            records_sdf,
            cells_df,
            self.maximum_number_of_cells_for_event,
            self.seed,
        )

        # 4) Continuing with the combined dataframe

        records_sdf = records_sdf.union(records_with_cell_id_errors)

        records_sdf = records_sdf.dropDuplicates([ColNames.user_id, ColNames.timestamp])

        records_sdf = records_sdf.withColumn(
            "generated_geometry",
            STF.ST_Transform(
                "generated_geometry",
                F.lit(f"EPSG:{self.cartesian_crs}"),
                F.lit("EPSG:4326"),
            ),
        )

        records_sdf = (
            records_sdf.withColumn(ColNames.longitude, STF.ST_X(F.col("generated_geometry")))
            .withColumn(ColNames.latitude, STF.ST_Y(F.col("generated_geometry")))
            .drop("generated_geometry")
        )

        # TODO: add rows with PLMN
        # MCC and loc_error are added to the records
        records_sdf = records_sdf.withColumn(ColNames.mcc, F.lit(self.mcc).cast(IntegerType()))

        records_sdf = records_sdf.withColumn(ColNames.mnc, F.lit(self.mnc))

        records_sdf = records_sdf.withColumn(ColNames.plmn, F.lit(None).cast(IntegerType()))

        records_sdf = records_sdf.withColumn(ColNames.year, F.year(F.col(ColNames.timestamp)))
        records_sdf = records_sdf.withColumn(ColNames.month, F.month(F.col(ColNames.timestamp)))
        records_sdf = records_sdf.withColumn(ColNames.day, F.dayofmonth(F.col(ColNames.timestamp)))

        # Generate errors

        if self.do_event_error_generation:
            records_sdf = self.generate_errors(synth_df_raw=records_sdf)

        # Select bronze schema columns
        columns = {field.name: F.col(field.name).cast(field.dataType) for field in BronzeEventDataObject.SCHEMA.fields}
        records_sdf = records_sdf.withColumns(columns)

        if self.order_output_by_timestamp:
            records_sdf = records_sdf.orderBy(ColNames.timestamp)

        self.output_data_objects[BronzeEventDataObject.ID].df = records_sdf

    @staticmethod
    def generate_event_timestamps_for_moves(
        stays_sdf: DataFrame, event_freq_moves: int, cartesian_crs: int, seed: int
    ) -> DataFrame:
        """
        Generates a DataFrame of event timestamps for movements between stays.

        For each stay in the input DataFrame, this method generates a random number of timestamps equal to the time
            difference between the end of the current stay and the start of the next stay, divided by the event
            frequency for moves.

        Args:
            stays_sdf (pyspark.sql.DataFrame): A DataFrame of stays.
            event_freq_moves (int): The frequency of events for movements.
            cartesian_crs (int): The EPSG code of the Cartesian coordinate reference system to use for the geometries.
            seed (int): The seed that determines the randomness of timestamp generation, and subsequent lat/lon generation.

        Returns:
            pyspark.sql.DataFrame: A DataFrame of event timestamps for movements.
        """

        # Since the rows with activity_type = movement don't have any locations in the population diaries,
        # we select the stay points and start generating timestamps in between the start and end of the stay

        stays_sdf = stays_sdf.withColumn(
            ColNames.geometry,
            STF.ST_Transform(
                STC.ST_Point(F.col(ColNames.longitude), F.col(ColNames.latitude)),
                F.lit("EPSG:4326"),
                F.lit(f"EPSG:{cartesian_crs}"),
            ),
        )

        # Define the window specification •
        window_spec = Window.partitionBy(ColNames.year, ColNames.month, ColNames.day, ColNames.user_id).orderBy(
            ColNames.initial_timestamp
        )

        # Add columns for next stay's geometry and start timestamp using the lead function
        stays_sdf = stays_sdf.withColumn(
            "next_stay_initial_timestamp",
            F.lead(ColNames.initial_timestamp, 1).over(window_spec),
        )

        stays_sdf = stays_sdf.withColumn("next_stay_geometry", F.lead(ColNames.geometry, 1).over(window_spec))

        stays_sdf = stays_sdf.withColumn(
            "time_diff_seconds",
            F.unix_timestamp("next_stay_initial_timestamp") - F.unix_timestamp(ColNames.final_timestamp),
        )

        # Calculate how many timestamps fit in the interval for the given frequency
        stays_sdf = stays_sdf.withColumn(
            "timestamps_count",
            (F.col("time_diff_seconds") / event_freq_moves).cast("integer"),
        )

        expr_str = f"transform(sequence(1, timestamps_count), x -> rand({seed}))"

        stays_sdf = stays_sdf.withColumn(
            "random_fraction_on_line",
            F.expr(expr_str),
        ).withColumn("random_fraction_on_line", F.explode(F.col("random_fraction_on_line")))

        # Generate timestamps
        stays_sdf = stays_sdf.withColumn(
            "offset_seconds",
            F.col("random_fraction_on_line") * F.col("time_diff_seconds"),
        )
        stays_sdf = stays_sdf.withColumn(
            ColNames.timestamp,
            F.from_unixtime(F.unix_timestamp(ColNames.final_timestamp) + F.col("offset_seconds")),
        )

        moves_sdf = stays_sdf.withColumn(ColNames.activity_type, F.lit("move"))

        # Keep only necessary columns
        moves_sdf = moves_sdf.select(
            ColNames.user_id,
            ColNames.timestamp,
            ColNames.geometry,
            "next_stay_geometry",
            "random_fraction_on_line",
            ColNames.year,
            ColNames.month,
            ColNames.day,
        )

        return moves_sdf

    @staticmethod
    def generate_event_timestamps_for_stays(
        stays_df: DataFrame, event_freq_stays: int, cartesian_crs: int, seed: int
    ) -> DataFrame:
        """
        Generates a DataFrame of event timestamps for stays based on the event frequency for stays.

        For each stay in the input DataFrame, this method calculates
        the time difference between the initial and final timestamps of the stay.
        It then generates a number of timestamps equal to this time difference divided by the event
        frequency for stays. Each timestamp is associated with the location of the stay.

        Args:
            stays_df (pyspark.sql.DataFrame): A DataFrame of stays.
            event_freq_stays (int): The frequency of events for stays.
            cartesian_crs (int): The EPSG code of the Cartesian coordinate reference system to use for the geometries.
            seed (int): The seed for generating timestamps randomly.
        Returns:
            pyspark.sql.DataFrame: A DataFrame of event timestamps for stays.
        """

        stays_df = stays_df.withColumn(
            "time_diff_seconds",
            F.unix_timestamp(F.col(ColNames.final_timestamp)) - F.unix_timestamp(F.col(ColNames.initial_timestamp)),
        )

        stays_df = stays_df.withColumn(
            "timestamps_count",
            (F.col("time_diff_seconds") / event_freq_stays).cast("integer"),
        )

        expr_str = f"transform(sequence(1, timestamps_count), x -> rand({seed}))"
        stays_df = stays_df.withColumn(
            "random_fraction_between_timestamps",
            F.expr(expr_str),
        )

        stays_df = stays_df.withColumn(
            "random_fraction_between_timestamps",
            F.explode(F.col("random_fraction_between_timestamps")),
        )
        stays_df = stays_df.withColumn(
            "offset_seconds",
            F.col("random_fraction_between_timestamps") * F.col("time_diff_seconds"),
        )
        stays_df = stays_df.withColumn(
            ColNames.timestamp,
            F.from_unixtime(F.unix_timestamp(ColNames.initial_timestamp) + F.col("offset_seconds")),
        )

        stays_df = stays_df.withColumn(
            "generated_geometry",
            STF.ST_Transform(
                STC.ST_Point(F.col(ColNames.longitude), F.col(ColNames.latitude)),
                F.lit("EPSG:4326"),
                F.lit(f"EPSG:{cartesian_crs}"),
            ),
        )

        stays_df = stays_df.select(
            ColNames.user_id,
            ColNames.timestamp,
            "generated_geometry",
            ColNames.year,
            ColNames.month,
            ColNames.day,
        )

        return stays_df

    @staticmethod
    def generate_locations_for_moves(event_timestamps_df: DataFrame, cartesian_crs: int) -> DataFrame:
        """
        Generates locations for moves based on the event timestamps dataframe.
        Returns a dataframe, where for each move in the event timestamps dataframe
        a geometry column is added, representing the location of the move.

        Performs interpolation along the line between the starting move point (previous stay point)
        and next move point (next stay point) using the randomly generated values in the column random_fraction_on_line.

        Args:
            event_timestamps_df (pyspark.sql.DataFrame): The event timestamps dataframe.

        Returns:
            pyspark.sql.DataFrame: The event timestamps dataframe with the added geometry column.
        """

        moves_with_geometry = event_timestamps_df.withColumn(
            "line",
            STF.ST_MakeLine(F.col(ColNames.geometry), F.col("next_stay_geometry")),
        )
        moves_with_geometry = moves_with_geometry.withColumn(
            "generated_geometry",
            STF.ST_SetSRID(
                STF.ST_LineInterpolatePoint(F.col("line"), F.col("random_fraction_on_line")),
                cartesian_crs,
            ),
        )

        moves_with_geometry = moves_with_geometry.select(
            ColNames.user_id,
            ColNames.timestamp,
            "generated_geometry",
            ColNames.year,
            ColNames.month,
            ColNames.day,
        )

        return moves_with_geometry

    @staticmethod
    def add_cell_ids_to_locations(
        events_with_locations_df: DataFrame,
        cells_df: DataFrame,
        max_n_of_cells: int,
        seed: int,
    ) -> DataFrame:
        """
        Links cell IDs to locations in the events DataFrame.

        This method performs a spatial join between the events and cells DataFrames to add cell IDs to each event.
        It first creates a buffer around each event location and finds cells that intersect with this buffer.
        It then calculates the distance from each event location to the cell and ranks the cells based on this distance.
        It keeps only the top 'max_n_of_cells' closest cells for each event.

        The method also adds a random index to each event-cell pair and filters to keep only one pair per event,
        randomly selecting one of the closest cells for each event.

        Args:
            events_with_locations_df (pyspark.sql.DataFrame): A DataFrame of events
            cells_df (pyspark.sql.DataFrame): A DataFrame of cells
            max_n_of_cells (int): The maximum number of closest cells to consider for each event.

        Returns:
            pyspark.sql.DataFrame: A DataFrame of events with cell IDs added.
        """
        events_with_cells_sdf = events_with_locations_df.join(
            cells_df[[ColNames.cell_id, "cell_geometry"]],
            (
                STP.ST_Intersects(
                    STF.ST_Buffer(
                        events_with_locations_df["generated_geometry"],
                        F.col("closest_cell_distance_max"),
                    ),
                    cells_df["cell_geometry"],
                )
            ),
        ).withColumn(
            "distance_to_cell",
            STF.ST_Distance(
                events_with_locations_df["generated_geometry"],
                cells_df["cell_geometry"],
            ),
        )

        # Selection of different cell ids for a given timestamp is random
        window_spec = Window.partitionBy(
            ColNames.year,
            ColNames.month,
            ColNames.day,
            ColNames.user_id,
            ColNames.timestamp,
        ).orderBy(F.col("distance_to_cell"))

        events_with_cells_sdf = events_with_cells_sdf.withColumn(
            "closest_cells_index", F.row_number().over(window_spec)
        ).filter(F.col("closest_cells_index") <= max_n_of_cells)

        window_spec_random = Window.partitionBy(
            ColNames.year,
            ColNames.month,
            ColNames.day,
            ColNames.user_id,
            ColNames.timestamp,
        ).orderBy(F.rand(seed=seed))
        events_with_cells_sdf = events_with_cells_sdf.withColumn(
            "random_cell_index", F.row_number().over(window_spec_random)
        ).filter(F.col("random_cell_index") == 1)

        records_sdf = events_with_cells_sdf.select(
            ColNames.user_id,
            ColNames.timestamp,
            "generated_geometry",
            ColNames.cell_id,
            ColNames.loc_error,
            ColNames.year,
            ColNames.month,
            ColNames.day,
            "is_modified",
        )

        return records_sdf

    @staticmethod
    def generate_location_errors(
        records_sdf: DataFrame,
        error_location_distance_max: float,
        error_location_distance_min: float,
        closest_cell_distance_max: float,
        cartesian_crs: int,
        seed: int,
    ) -> DataFrame:
        """
        Generates location errors for x and y coordinates of each record in the DataFrame.

        This method adds a random location error to the x and y coordinates of each record in the input DataFrame.
        The location error is a random value between error_location_distance_min and error_location_distance_max,
        and is added or subtracted from the x and y coordinates based on a random sign.

        Args:
            records_sdf (DataFrame): A DataFrame of records
            error_location_distance_max (float): The maximum location error distance.
            error_location_distance_min (float): The minimum location error distance.
            closest_cell_distance_max (float): The maximum distance to the closest cell.
            cartesian_crs (int): The EPSG code of the Cartesian coordinate reference system to use for the geometries.
            seed (int): The seed for the random number generator.

        Returns:
            DataFrame: A DataFrame of records with location errors added to the x and y coordinates.
        """

        errors_df = (
            records_sdf.withColumn("y", STF.ST_Y(F.col("generated_geometry")))
            .withColumn("x", STF.ST_X(F.col("generated_geometry")))
            .drop("generated_geometry")
        )

        errors_df = errors_df.withColumn(
            ColNames.loc_error,
            (F.rand(seed=seed) * (error_location_distance_max - error_location_distance_min))
            + error_location_distance_min,
        )

        errors_df = (
            errors_df.withColumn("sign", F.when(F.rand(seed=seed) > 0.5, 1).otherwise(-1))
            .withColumn("new_x", F.col("x") + (F.col(ColNames.loc_error) * F.col("sign")))
            .withColumn("new_y", F.col("y") + (F.col(ColNames.loc_error) * F.col("sign")))
        )

        errors_df = errors_df.withColumn(
            "generated_geometry",
            STF.ST_SetSRID(STC.ST_Point(F.col("new_x"), F.col("new_y")), cartesian_crs),
        ).drop("new_x", "new_y")

        errors_df = errors_df.withColumn("closest_cell_distance_max", F.lit(closest_cell_distance_max))

        errors_df = errors_df.select(
            ColNames.user_id,
            ColNames.timestamp,
            "generated_geometry",
            ColNames.year,
            ColNames.month,
            ColNames.day,
            ColNames.loc_error,
            "closest_cell_distance_max",
        )

        return errors_df

    @staticmethod
    def generate_records_with_non_existant_cell_ids(records_sdf: DataFrame, cells_sdf: DataFrame, seed) -> DataFrame:
        """
        Adds the cell_id column so that it will contain cell_ids that
        are not present in the cells_df dataframe, yet follow the format of a cell id.

        Args:
            records_sdf (DataFrame): generated records
            cells_sdf (DataFrame): cells dataframe

            DataFrame: records with cell ids that are not present in the cells_df dataframe
        """

        # Generates random cell ids for cells_df, and selects those
        # Join to records is implemented with a monotonically increasing id
        # So to limit that, this number of all unique cells is used
        # TODO check how to make this more optimal

        n_of_actual_cell_ids_as_base = cells_sdf.count()

        cells_df_with_random_cell_ids = cells_sdf[[ColNames.cell_id]].withColumn(
            "random_cell_id",
            (F.rand(seed=seed) * (999_999_999_999_999 - 10_000_000_000_000) + 10_000_000_000_000).cast("bigint"),
        )

        # Do an  left anti join to ensure that now generated cell ids are not among actual cell ids

        cells_df_inner_joined = cells_df_with_random_cell_ids[["random_cell_id"]].join(
            cells_sdf[[ColNames.cell_id]],
            on=F.col("random_cell_id") == F.col(ColNames.cell_id),
            how="leftanti",
        )

        cells_df_inner_joined = cells_df_inner_joined.withColumn("row_number", (F.monotonically_increasing_id()))
        records_sdf = records_sdf.withColumn(
            "row_number",
            (F.monotonically_increasing_id() % n_of_actual_cell_ids_as_base) + 1,
        )

        cells_df_inner_joined = cells_df_inner_joined.select(
            "row_number", F.col("random_cell_id").alias(ColNames.cell_id)
        )

        records_with_random_cell_id = records_sdf.join(cells_df_inner_joined, on="row_number", how="left").drop(
            "row_number"
        )

        records_with_random_cell_id = records_with_random_cell_id.select(
            ColNames.user_id,
            ColNames.timestamp,
            "generated_geometry",
            ColNames.cell_id,
            ColNames.loc_error,
            ColNames.year,
            ColNames.month,
            ColNames.day,
        )

        return records_with_random_cell_id

    # @staticmethod
    def generate_nulls_in_mandatory_fields(self, df: DataFrame) -> DataFrame:
        """
        Generates null values in some fields of some rows based on configuration parameters.

        Args:
            df (pyspark.sql.DataFrame): clean synthetic data

        Returns:
            pyspark.sql.DataFrame: synthetic records dataframe with nulls in some columns of some rows
        """

        # Two probability parameters from config apply:
        # First one sets how many rows (as fraction of all rows) are selected for possible value nulling.
        # Second one sets the likelyhood for each column to be set to null.
        # If 1.0, then all mandatory columns of each selected row will be nulled.

        if self.null_row_prob == 0.0:
            # TODO logging
            return df

        # Split input dataframe to unchanged and changed portions
        df = df.cache()
        error_row_prob = self.null_row_prob
        unchanged_row_prob = 1.0 - error_row_prob
        unchanged_rows_df, error_rows_df = df.randomSplit([unchanged_row_prob, error_row_prob], seed=self.seed + 1)

        columns_for_null_selection = list(self.error_generation_allowed_columns)
        columns_for_null_selection.sort()

        random.seed(self.seed)
        columns_to_set_as_null = random.sample(
            columns_for_null_selection,
            int(round(self.column_is_null_probability * len(columns_for_null_selection), 0)),
        )

        for column in columns_to_set_as_null:
            error_rows_df = error_rows_df.withColumn(column, F.lit(None))

        error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

        # Re-combine unchanged and changed rows of the dataframe.
        return unchanged_rows_df.union(error_rows_df)

    # @staticmethod
    def generate_out_of_bounds_dates(self, df: DataFrame) -> DataFrame:
        """
        Transforms the timestamp column values to be out of bound of the selected period,
        based on probabilities from configuration.
        Only rows with non-null timestamp values can become altered here.

        Args:
            df (pyspark.sql.DataFrame): Dataframe of clean synthetic events.

        Returns:
            pyspark.sql.DataFrame: Data where some timestamp column values are out of bounds as per config.
        """

        if self.out_of_bounds_prob == 0.0:
            # TODO logging
            return df

        # Calculate approximate span in months from config parameters.
        # The parameters should approximately cover the range of "clean" dates, so that the erroneous values can be generated outside the range.

        # TODO
        # This now uses the whole input data to set the bounds
        ending_timestamp = df.agg(F.max(ColNames.timestamp)).collect()[0][0]
        starting_timestamp = df.agg(F.min(ColNames.timestamp)).collect()[0][0]
        events_span_in_months = max(1, (pd.Timestamp(ending_timestamp) - pd.Timestamp(starting_timestamp)).days / 30)

        # Split rows by null/non-null timestamp.
        df = df.cache()
        null_timestamp_df = df.where(F.col(ColNames.timestamp).isNull())
        nonnull_timestamp_df = df.where(F.col(ColNames.timestamp).isNotNull())
        df.unpersist()

        # From non-null timestamp rows, select a subset for adding errors to, depending on config parameter.
        nonnull_timestamp_df = nonnull_timestamp_df.cache()
        error_row_prob = self.out_of_bounds_prob
        unchanged_row_prob = 1.0 - error_row_prob
        unchanged_rows_df, error_rows_df = nonnull_timestamp_df.randomSplit(
            [unchanged_row_prob, error_row_prob], seed=self.seed + 3
        )
        # Combine null timestamp rows and not-modified non-null timestamp rows.
        unchanged_rows_df = unchanged_rows_df.union(null_timestamp_df)

        # Add months offset to error rows to make their timestamp values become outside expected range.
        months_to_add_col = (F.lit(2) + F.rand(seed=self.seed)) * F.lit(events_span_in_months)
        modified_date_col = F.add_months(F.col(ColNames.timestamp), months_to_add_col)
        time_col = F.date_format(F.col(ColNames.timestamp), " HH:mm:ss")
        error_rows_df = error_rows_df.withColumn(ColNames.timestamp, F.concat(modified_date_col, time_col))
        error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

        # Combine changed and unchanged rows dataframes.
        return unchanged_rows_df.union(error_rows_df)

    # @staticmethod
    def generate_erroneous_type_values(self, df: DataFrame) -> DataFrame:
        """
        Generates errors for sampled rows. Errors are custom defined, for instance a random string, or corrupt timestamp.
        Does not cast the columns to a different type.

        Args:
            df (pyspark.sql.DataFrame): dataframe that may have out of bound and null records.

        Returns:
            pyspark.sql.DataFrame: dataframe with erroneous rows, and possibly, with nulls and out of bound records.
        """

        if self.data_type_error_prob == 0:
            # TODO logging
            return df

        # Split dataframe by whether the row has been modified during the error-adding process already.
        # Already errored rows do not get further changes.
        df = df.cache()
        previously_modified_rows_df = df.where(F.col("is_modified"))
        unmodified_rows_df = df.where(~(F.col("is_modified")))
        df.unpersist()

        # From unmodified rows, select a subset for adding errors to, depending on config parameter.
        unmodified_rows_df = unmodified_rows_df.cache()
        error_row_prob = self.data_type_error_prob
        unchanged_row_prob = 1.0 - error_row_prob
        unchanged_rows_df, error_rows_df = unmodified_rows_df.randomSplit(
            [unchanged_row_prob, error_row_prob], seed=self.seed + 5
        )
        # Gather rows that are not modified in this step (combine previously-modified rows and not-selected unmodified rows).
        unchanged_rows_df = unchanged_rows_df.union(previously_modified_rows_df)

        # Iterate over mandatory columns to mutate the value, depending on column data type.
        for struct_schema in BronzeEventDataObject.SCHEMA:
            if struct_schema.name not in self.error_generation_allowed_columns:
                continue

            column = struct_schema.name
            col_dtype = struct_schema.dataType

            if col_dtype in [BinaryType()]:
                # md5 is a smaller hash,
                to_value = F.unhex(F.md5(F.base64(F.col(column)).cast(StringType())))

            if col_dtype in [FloatType(), IntegerType()]:
                # changes mcc, lat, lon
                to_value = (F.col(column) + ((F.rand(seed=self.seed) + F.lit(180)) * 10000)).cast("int")

            if column == ColNames.timestamp and col_dtype == StringType():
                # Timezone difference manipulation may be performed here, if cleaning module were to support it.
                # statically one timezone difference
                # timezone_to = random.randint(0, 12)
                to_value = F.concat(
                    F.substring(F.col(column), 1, 10),
                    F.lit("T"),
                    F.substring(F.col(column), 12, 9),
                    # TODO: Temporary remove of timezone addition as cleaning
                    # module does not support it
                    # F.lit(f"+0{timezone_to}:00")
                )

            if column == ColNames.cell_id and col_dtype == StringType():
                random.seed(self.seed)
                random_string = "".join(random.choice(string.ascii_uppercase + string.digits) for _ in range(6)) + "_"
                to_value = F.concat(F.lit(random_string), (F.rand(seed=self.seed) * 100).cast("int"))

            error_rows_df = error_rows_df.withColumn(column, to_value)
        error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))
        return unchanged_rows_df.union(error_rows_df)

    def generate_same_location_duplicates(self, df: DataFrame) -> DataFrame:
        """
        Selects a subset of the previously generated data (syntactically clean data) and creates same location duplicates.
        If input has odd number of rows, one row is discarded.

        Args:
            df (pyspark.sql.DataFrame): Dataframe of clean synthetic events.

        Returns:
            pyspark.sql.DataFrame: Dataframe with same location duplicates.

        """

        if self.same_location_duplicate_prob == 0:
            return df

        # Split dataframe by whether the row has been modified during the error-adding process already.
        # Already errored rows do not get further changes.
        df = df.cache()
        previously_modified_rows_df = df.where(F.col("is_modified"))
        unmodified_rows_df = df.where(~(F.col("is_modified")))
        df.unpersist()

        # From unmodified rows, select a subset for adding errors to, depending on config parameter.
        unmodified_rows_df = unmodified_rows_df.cache()
        error_row_prob = self.same_location_duplicate_prob
        unchanged_row_prob = 1.0 - error_row_prob

        unchanged_rows_df, error_rows_df = unmodified_rows_df.randomSplit(
            [unchanged_row_prob, error_row_prob], seed=self.seed + 7
        )

        # Gather rows that are not modified in this step (combine previously-modified rows and not-selected unmodified rows).
        unchanged_rows_df = unchanged_rows_df.union(previously_modified_rows_df)

        # Select all even rows and duplicate these
        error_rows_df = error_rows_df.withColumn(
            "user_row_num",
            F.row_number().over(Window.partitionBy(ColNames.user_id).orderBy(ColNames.timestamp)),
        )

        even_rows = error_rows_df.where(F.col("user_row_num") % 2 == 0).drop("user_row_num")

        error_rows_df = even_rows.union(even_rows)
        error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

        return unchanged_rows_df.union(error_rows_df)

    def generate_different_location_duplicates(self, df: DataFrame) -> DataFrame:
        """
        Selects a subset of the previously generated data (syntactically clean data) and creates different location duplicates.
        If input has odd number of rows, one row is discarded.

        Args:
            df (pyspark.sql.DataFrame): Dataframe of clean synthetic events.

        Returns:
            pyspark.sql.DataFrame: Dataframe with same different location duplicates.

        """

        if self.different_location_duplicate_prob == 0:
            return df

        # Split dataframe by whether the row has been modified during the error-adding process already.
        # Already errored rows do not get further changes.
        df = df.cache()
        previously_modified_rows_df = df.where(F.col("is_modified"))
        unmodified_rows_df = df.where(~(F.col("is_modified")))
        df.unpersist()

        # From unmodified rows, select a subset for adding errors to, depending on config parameter.
        unmodified_rows_df = unmodified_rows_df.cache()
        error_row_prob = self.different_location_duplicate_prob
        unchanged_row_prob = 1.0 - error_row_prob
        unchanged_rows_df, error_rows_df = unmodified_rows_df.randomSplit(
            [unchanged_row_prob, error_row_prob], seed=self.seed + 9
        )

        # Gather rows that are not modified in this step (combine previously-modified rows and not-selected unmodified rows).
        unchanged_rows_df = unchanged_rows_df.union(previously_modified_rows_df)

        # Select all even rows and modify one set of these to offset the location

        error_rows_df = error_rows_df.withColumn(
            "user_row_num",
            F.row_number().over(Window.partitionBy(ColNames.user_id).orderBy(ColNames.timestamp)),
        )

        even_rows = error_rows_df.where(F.col("user_row_num") % 2 == 0).drop("user_row_num")

        # No change to cell id here, as that would additionnally need to check that the modified cell id is actual in the diaries
        modified_rows = even_rows.withColumn(ColNames.latitude, F.col(ColNames.latitude) * F.lit(0.95)).withColumn(
            ColNames.longitude, F.col(ColNames.longitude) * F.lit(0.95)
        )

        error_rows_df = even_rows.union(modified_rows)
        error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

        return unchanged_rows_df.union(error_rows_df)

    def generate_errors(self, synth_df_raw: DataFrame) -> DataFrame:
        """
        Inputs a dataframe that contains synthetic records based on diaries.
        These records include locational errors, etc. This function only selects the clean generated records from previous steps.
        Generates errors for those clean records.
        Calls all error generation functions.

        Args:
            synth_df_raw (pyspark.sql.DataFrame): Data of raw and clean synthetic events.

        Returns:
            pyspark.sql.DataFrame: Dataframe, with erroneous records, according to probabilities defined in the configuration.
        """

        synth_df_raw = synth_df_raw.where(~F.col("is_modified"))

        synth_df = synth_df_raw.cache()

        synth_df = self.generate_nulls_in_mandatory_fields(synth_df)
        synth_df = self.generate_out_of_bounds_dates(synth_df)
        synth_df = self.generate_erroneous_type_values(synth_df)
        synth_df = self.generate_same_location_duplicates(synth_df)
        synth_df = self.generate_different_location_duplicates(synth_df)

        return synth_df

add_cell_ids_to_locations(events_with_locations_df, cells_df, max_n_of_cells, seed) staticmethod

Links cell IDs to locations in the events DataFrame.

This method performs a spatial join between the events and cells DataFrames to add cell IDs to each event. It first creates a buffer around each event location and finds cells that intersect with this buffer. It then calculates the distance from each event location to the cell and ranks the cells based on this distance. It keeps only the top 'max_n_of_cells' closest cells for each event.

The method also adds a random index to each event-cell pair and filters to keep only one pair per event, randomly selecting one of the closest cells for each event.

Parameters:

Name Type Description Default
events_with_locations_df DataFrame

A DataFrame of events

required
cells_df DataFrame

A DataFrame of cells

required
max_n_of_cells int

The maximum number of closest cells to consider for each event.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: A DataFrame of events with cell IDs added.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
@staticmethod
def add_cell_ids_to_locations(
    events_with_locations_df: DataFrame,
    cells_df: DataFrame,
    max_n_of_cells: int,
    seed: int,
) -> DataFrame:
    """
    Links cell IDs to locations in the events DataFrame.

    This method performs a spatial join between the events and cells DataFrames to add cell IDs to each event.
    It first creates a buffer around each event location and finds cells that intersect with this buffer.
    It then calculates the distance from each event location to the cell and ranks the cells based on this distance.
    It keeps only the top 'max_n_of_cells' closest cells for each event.

    The method also adds a random index to each event-cell pair and filters to keep only one pair per event,
    randomly selecting one of the closest cells for each event.

    Args:
        events_with_locations_df (pyspark.sql.DataFrame): A DataFrame of events
        cells_df (pyspark.sql.DataFrame): A DataFrame of cells
        max_n_of_cells (int): The maximum number of closest cells to consider for each event.

    Returns:
        pyspark.sql.DataFrame: A DataFrame of events with cell IDs added.
    """
    events_with_cells_sdf = events_with_locations_df.join(
        cells_df[[ColNames.cell_id, "cell_geometry"]],
        (
            STP.ST_Intersects(
                STF.ST_Buffer(
                    events_with_locations_df["generated_geometry"],
                    F.col("closest_cell_distance_max"),
                ),
                cells_df["cell_geometry"],
            )
        ),
    ).withColumn(
        "distance_to_cell",
        STF.ST_Distance(
            events_with_locations_df["generated_geometry"],
            cells_df["cell_geometry"],
        ),
    )

    # Selection of different cell ids for a given timestamp is random
    window_spec = Window.partitionBy(
        ColNames.year,
        ColNames.month,
        ColNames.day,
        ColNames.user_id,
        ColNames.timestamp,
    ).orderBy(F.col("distance_to_cell"))

    events_with_cells_sdf = events_with_cells_sdf.withColumn(
        "closest_cells_index", F.row_number().over(window_spec)
    ).filter(F.col("closest_cells_index") <= max_n_of_cells)

    window_spec_random = Window.partitionBy(
        ColNames.year,
        ColNames.month,
        ColNames.day,
        ColNames.user_id,
        ColNames.timestamp,
    ).orderBy(F.rand(seed=seed))
    events_with_cells_sdf = events_with_cells_sdf.withColumn(
        "random_cell_index", F.row_number().over(window_spec_random)
    ).filter(F.col("random_cell_index") == 1)

    records_sdf = events_with_cells_sdf.select(
        ColNames.user_id,
        ColNames.timestamp,
        "generated_geometry",
        ColNames.cell_id,
        ColNames.loc_error,
        ColNames.year,
        ColNames.month,
        ColNames.day,
        "is_modified",
    )

    return records_sdf

generate_different_location_duplicates(df)

Selects a subset of the previously generated data (syntactically clean data) and creates different location duplicates. If input has odd number of rows, one row is discarded.

Parameters:

Name Type Description Default
df DataFrame

Dataframe of clean synthetic events.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: Dataframe with same different location duplicates.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
def generate_different_location_duplicates(self, df: DataFrame) -> DataFrame:
    """
    Selects a subset of the previously generated data (syntactically clean data) and creates different location duplicates.
    If input has odd number of rows, one row is discarded.

    Args:
        df (pyspark.sql.DataFrame): Dataframe of clean synthetic events.

    Returns:
        pyspark.sql.DataFrame: Dataframe with same different location duplicates.

    """

    if self.different_location_duplicate_prob == 0:
        return df

    # Split dataframe by whether the row has been modified during the error-adding process already.
    # Already errored rows do not get further changes.
    df = df.cache()
    previously_modified_rows_df = df.where(F.col("is_modified"))
    unmodified_rows_df = df.where(~(F.col("is_modified")))
    df.unpersist()

    # From unmodified rows, select a subset for adding errors to, depending on config parameter.
    unmodified_rows_df = unmodified_rows_df.cache()
    error_row_prob = self.different_location_duplicate_prob
    unchanged_row_prob = 1.0 - error_row_prob
    unchanged_rows_df, error_rows_df = unmodified_rows_df.randomSplit(
        [unchanged_row_prob, error_row_prob], seed=self.seed + 9
    )

    # Gather rows that are not modified in this step (combine previously-modified rows and not-selected unmodified rows).
    unchanged_rows_df = unchanged_rows_df.union(previously_modified_rows_df)

    # Select all even rows and modify one set of these to offset the location

    error_rows_df = error_rows_df.withColumn(
        "user_row_num",
        F.row_number().over(Window.partitionBy(ColNames.user_id).orderBy(ColNames.timestamp)),
    )

    even_rows = error_rows_df.where(F.col("user_row_num") % 2 == 0).drop("user_row_num")

    # No change to cell id here, as that would additionnally need to check that the modified cell id is actual in the diaries
    modified_rows = even_rows.withColumn(ColNames.latitude, F.col(ColNames.latitude) * F.lit(0.95)).withColumn(
        ColNames.longitude, F.col(ColNames.longitude) * F.lit(0.95)
    )

    error_rows_df = even_rows.union(modified_rows)
    error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

    return unchanged_rows_df.union(error_rows_df)

generate_erroneous_type_values(df)

Generates errors for sampled rows. Errors are custom defined, for instance a random string, or corrupt timestamp. Does not cast the columns to a different type.

Parameters:

Name Type Description Default
df DataFrame

dataframe that may have out of bound and null records.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: dataframe with erroneous rows, and possibly, with nulls and out of bound records.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
def generate_erroneous_type_values(self, df: DataFrame) -> DataFrame:
    """
    Generates errors for sampled rows. Errors are custom defined, for instance a random string, or corrupt timestamp.
    Does not cast the columns to a different type.

    Args:
        df (pyspark.sql.DataFrame): dataframe that may have out of bound and null records.

    Returns:
        pyspark.sql.DataFrame: dataframe with erroneous rows, and possibly, with nulls and out of bound records.
    """

    if self.data_type_error_prob == 0:
        # TODO logging
        return df

    # Split dataframe by whether the row has been modified during the error-adding process already.
    # Already errored rows do not get further changes.
    df = df.cache()
    previously_modified_rows_df = df.where(F.col("is_modified"))
    unmodified_rows_df = df.where(~(F.col("is_modified")))
    df.unpersist()

    # From unmodified rows, select a subset for adding errors to, depending on config parameter.
    unmodified_rows_df = unmodified_rows_df.cache()
    error_row_prob = self.data_type_error_prob
    unchanged_row_prob = 1.0 - error_row_prob
    unchanged_rows_df, error_rows_df = unmodified_rows_df.randomSplit(
        [unchanged_row_prob, error_row_prob], seed=self.seed + 5
    )
    # Gather rows that are not modified in this step (combine previously-modified rows and not-selected unmodified rows).
    unchanged_rows_df = unchanged_rows_df.union(previously_modified_rows_df)

    # Iterate over mandatory columns to mutate the value, depending on column data type.
    for struct_schema in BronzeEventDataObject.SCHEMA:
        if struct_schema.name not in self.error_generation_allowed_columns:
            continue

        column = struct_schema.name
        col_dtype = struct_schema.dataType

        if col_dtype in [BinaryType()]:
            # md5 is a smaller hash,
            to_value = F.unhex(F.md5(F.base64(F.col(column)).cast(StringType())))

        if col_dtype in [FloatType(), IntegerType()]:
            # changes mcc, lat, lon
            to_value = (F.col(column) + ((F.rand(seed=self.seed) + F.lit(180)) * 10000)).cast("int")

        if column == ColNames.timestamp and col_dtype == StringType():
            # Timezone difference manipulation may be performed here, if cleaning module were to support it.
            # statically one timezone difference
            # timezone_to = random.randint(0, 12)
            to_value = F.concat(
                F.substring(F.col(column), 1, 10),
                F.lit("T"),
                F.substring(F.col(column), 12, 9),
                # TODO: Temporary remove of timezone addition as cleaning
                # module does not support it
                # F.lit(f"+0{timezone_to}:00")
            )

        if column == ColNames.cell_id and col_dtype == StringType():
            random.seed(self.seed)
            random_string = "".join(random.choice(string.ascii_uppercase + string.digits) for _ in range(6)) + "_"
            to_value = F.concat(F.lit(random_string), (F.rand(seed=self.seed) * 100).cast("int"))

        error_rows_df = error_rows_df.withColumn(column, to_value)
    error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))
    return unchanged_rows_df.union(error_rows_df)

generate_errors(synth_df_raw)

Inputs a dataframe that contains synthetic records based on diaries. These records include locational errors, etc. This function only selects the clean generated records from previous steps. Generates errors for those clean records. Calls all error generation functions.

Parameters:

Name Type Description Default
synth_df_raw DataFrame

Data of raw and clean synthetic events.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: Dataframe, with erroneous records, according to probabilities defined in the configuration.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
def generate_errors(self, synth_df_raw: DataFrame) -> DataFrame:
    """
    Inputs a dataframe that contains synthetic records based on diaries.
    These records include locational errors, etc. This function only selects the clean generated records from previous steps.
    Generates errors for those clean records.
    Calls all error generation functions.

    Args:
        synth_df_raw (pyspark.sql.DataFrame): Data of raw and clean synthetic events.

    Returns:
        pyspark.sql.DataFrame: Dataframe, with erroneous records, according to probabilities defined in the configuration.
    """

    synth_df_raw = synth_df_raw.where(~F.col("is_modified"))

    synth_df = synth_df_raw.cache()

    synth_df = self.generate_nulls_in_mandatory_fields(synth_df)
    synth_df = self.generate_out_of_bounds_dates(synth_df)
    synth_df = self.generate_erroneous_type_values(synth_df)
    synth_df = self.generate_same_location_duplicates(synth_df)
    synth_df = self.generate_different_location_duplicates(synth_df)

    return synth_df

generate_event_timestamps_for_moves(stays_sdf, event_freq_moves, cartesian_crs, seed) staticmethod

Generates a DataFrame of event timestamps for movements between stays.

For each stay in the input DataFrame, this method generates a random number of timestamps equal to the time difference between the end of the current stay and the start of the next stay, divided by the event frequency for moves.

Parameters:

Name Type Description Default
stays_sdf DataFrame

A DataFrame of stays.

required
event_freq_moves int

The frequency of events for movements.

required
cartesian_crs int

The EPSG code of the Cartesian coordinate reference system to use for the geometries.

required
seed int

The seed that determines the randomness of timestamp generation, and subsequent lat/lon generation.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: A DataFrame of event timestamps for movements.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
@staticmethod
def generate_event_timestamps_for_moves(
    stays_sdf: DataFrame, event_freq_moves: int, cartesian_crs: int, seed: int
) -> DataFrame:
    """
    Generates a DataFrame of event timestamps for movements between stays.

    For each stay in the input DataFrame, this method generates a random number of timestamps equal to the time
        difference between the end of the current stay and the start of the next stay, divided by the event
        frequency for moves.

    Args:
        stays_sdf (pyspark.sql.DataFrame): A DataFrame of stays.
        event_freq_moves (int): The frequency of events for movements.
        cartesian_crs (int): The EPSG code of the Cartesian coordinate reference system to use for the geometries.
        seed (int): The seed that determines the randomness of timestamp generation, and subsequent lat/lon generation.

    Returns:
        pyspark.sql.DataFrame: A DataFrame of event timestamps for movements.
    """

    # Since the rows with activity_type = movement don't have any locations in the population diaries,
    # we select the stay points and start generating timestamps in between the start and end of the stay

    stays_sdf = stays_sdf.withColumn(
        ColNames.geometry,
        STF.ST_Transform(
            STC.ST_Point(F.col(ColNames.longitude), F.col(ColNames.latitude)),
            F.lit("EPSG:4326"),
            F.lit(f"EPSG:{cartesian_crs}"),
        ),
    )

    # Define the window specification •
    window_spec = Window.partitionBy(ColNames.year, ColNames.month, ColNames.day, ColNames.user_id).orderBy(
        ColNames.initial_timestamp
    )

    # Add columns for next stay's geometry and start timestamp using the lead function
    stays_sdf = stays_sdf.withColumn(
        "next_stay_initial_timestamp",
        F.lead(ColNames.initial_timestamp, 1).over(window_spec),
    )

    stays_sdf = stays_sdf.withColumn("next_stay_geometry", F.lead(ColNames.geometry, 1).over(window_spec))

    stays_sdf = stays_sdf.withColumn(
        "time_diff_seconds",
        F.unix_timestamp("next_stay_initial_timestamp") - F.unix_timestamp(ColNames.final_timestamp),
    )

    # Calculate how many timestamps fit in the interval for the given frequency
    stays_sdf = stays_sdf.withColumn(
        "timestamps_count",
        (F.col("time_diff_seconds") / event_freq_moves).cast("integer"),
    )

    expr_str = f"transform(sequence(1, timestamps_count), x -> rand({seed}))"

    stays_sdf = stays_sdf.withColumn(
        "random_fraction_on_line",
        F.expr(expr_str),
    ).withColumn("random_fraction_on_line", F.explode(F.col("random_fraction_on_line")))

    # Generate timestamps
    stays_sdf = stays_sdf.withColumn(
        "offset_seconds",
        F.col("random_fraction_on_line") * F.col("time_diff_seconds"),
    )
    stays_sdf = stays_sdf.withColumn(
        ColNames.timestamp,
        F.from_unixtime(F.unix_timestamp(ColNames.final_timestamp) + F.col("offset_seconds")),
    )

    moves_sdf = stays_sdf.withColumn(ColNames.activity_type, F.lit("move"))

    # Keep only necessary columns
    moves_sdf = moves_sdf.select(
        ColNames.user_id,
        ColNames.timestamp,
        ColNames.geometry,
        "next_stay_geometry",
        "random_fraction_on_line",
        ColNames.year,
        ColNames.month,
        ColNames.day,
    )

    return moves_sdf

generate_event_timestamps_for_stays(stays_df, event_freq_stays, cartesian_crs, seed) staticmethod

Generates a DataFrame of event timestamps for stays based on the event frequency for stays.

For each stay in the input DataFrame, this method calculates the time difference between the initial and final timestamps of the stay. It then generates a number of timestamps equal to this time difference divided by the event frequency for stays. Each timestamp is associated with the location of the stay.

Parameters:

Name Type Description Default
stays_df DataFrame

A DataFrame of stays.

required
event_freq_stays int

The frequency of events for stays.

required
cartesian_crs int

The EPSG code of the Cartesian coordinate reference system to use for the geometries.

required
seed int

The seed for generating timestamps randomly.

required

Returns: pyspark.sql.DataFrame: A DataFrame of event timestamps for stays.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
@staticmethod
def generate_event_timestamps_for_stays(
    stays_df: DataFrame, event_freq_stays: int, cartesian_crs: int, seed: int
) -> DataFrame:
    """
    Generates a DataFrame of event timestamps for stays based on the event frequency for stays.

    For each stay in the input DataFrame, this method calculates
    the time difference between the initial and final timestamps of the stay.
    It then generates a number of timestamps equal to this time difference divided by the event
    frequency for stays. Each timestamp is associated with the location of the stay.

    Args:
        stays_df (pyspark.sql.DataFrame): A DataFrame of stays.
        event_freq_stays (int): The frequency of events for stays.
        cartesian_crs (int): The EPSG code of the Cartesian coordinate reference system to use for the geometries.
        seed (int): The seed for generating timestamps randomly.
    Returns:
        pyspark.sql.DataFrame: A DataFrame of event timestamps for stays.
    """

    stays_df = stays_df.withColumn(
        "time_diff_seconds",
        F.unix_timestamp(F.col(ColNames.final_timestamp)) - F.unix_timestamp(F.col(ColNames.initial_timestamp)),
    )

    stays_df = stays_df.withColumn(
        "timestamps_count",
        (F.col("time_diff_seconds") / event_freq_stays).cast("integer"),
    )

    expr_str = f"transform(sequence(1, timestamps_count), x -> rand({seed}))"
    stays_df = stays_df.withColumn(
        "random_fraction_between_timestamps",
        F.expr(expr_str),
    )

    stays_df = stays_df.withColumn(
        "random_fraction_between_timestamps",
        F.explode(F.col("random_fraction_between_timestamps")),
    )
    stays_df = stays_df.withColumn(
        "offset_seconds",
        F.col("random_fraction_between_timestamps") * F.col("time_diff_seconds"),
    )
    stays_df = stays_df.withColumn(
        ColNames.timestamp,
        F.from_unixtime(F.unix_timestamp(ColNames.initial_timestamp) + F.col("offset_seconds")),
    )

    stays_df = stays_df.withColumn(
        "generated_geometry",
        STF.ST_Transform(
            STC.ST_Point(F.col(ColNames.longitude), F.col(ColNames.latitude)),
            F.lit("EPSG:4326"),
            F.lit(f"EPSG:{cartesian_crs}"),
        ),
    )

    stays_df = stays_df.select(
        ColNames.user_id,
        ColNames.timestamp,
        "generated_geometry",
        ColNames.year,
        ColNames.month,
        ColNames.day,
    )

    return stays_df

generate_location_errors(records_sdf, error_location_distance_max, error_location_distance_min, closest_cell_distance_max, cartesian_crs, seed) staticmethod

Generates location errors for x and y coordinates of each record in the DataFrame.

This method adds a random location error to the x and y coordinates of each record in the input DataFrame. The location error is a random value between error_location_distance_min and error_location_distance_max, and is added or subtracted from the x and y coordinates based on a random sign.

Parameters:

Name Type Description Default
records_sdf DataFrame

A DataFrame of records

required
error_location_distance_max float

The maximum location error distance.

required
error_location_distance_min float

The minimum location error distance.

required
closest_cell_distance_max float

The maximum distance to the closest cell.

required
cartesian_crs int

The EPSG code of the Cartesian coordinate reference system to use for the geometries.

required
seed int

The seed for the random number generator.

required

Returns:

Name Type Description
DataFrame DataFrame

A DataFrame of records with location errors added to the x and y coordinates.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
@staticmethod
def generate_location_errors(
    records_sdf: DataFrame,
    error_location_distance_max: float,
    error_location_distance_min: float,
    closest_cell_distance_max: float,
    cartesian_crs: int,
    seed: int,
) -> DataFrame:
    """
    Generates location errors for x and y coordinates of each record in the DataFrame.

    This method adds a random location error to the x and y coordinates of each record in the input DataFrame.
    The location error is a random value between error_location_distance_min and error_location_distance_max,
    and is added or subtracted from the x and y coordinates based on a random sign.

    Args:
        records_sdf (DataFrame): A DataFrame of records
        error_location_distance_max (float): The maximum location error distance.
        error_location_distance_min (float): The minimum location error distance.
        closest_cell_distance_max (float): The maximum distance to the closest cell.
        cartesian_crs (int): The EPSG code of the Cartesian coordinate reference system to use for the geometries.
        seed (int): The seed for the random number generator.

    Returns:
        DataFrame: A DataFrame of records with location errors added to the x and y coordinates.
    """

    errors_df = (
        records_sdf.withColumn("y", STF.ST_Y(F.col("generated_geometry")))
        .withColumn("x", STF.ST_X(F.col("generated_geometry")))
        .drop("generated_geometry")
    )

    errors_df = errors_df.withColumn(
        ColNames.loc_error,
        (F.rand(seed=seed) * (error_location_distance_max - error_location_distance_min))
        + error_location_distance_min,
    )

    errors_df = (
        errors_df.withColumn("sign", F.when(F.rand(seed=seed) > 0.5, 1).otherwise(-1))
        .withColumn("new_x", F.col("x") + (F.col(ColNames.loc_error) * F.col("sign")))
        .withColumn("new_y", F.col("y") + (F.col(ColNames.loc_error) * F.col("sign")))
    )

    errors_df = errors_df.withColumn(
        "generated_geometry",
        STF.ST_SetSRID(STC.ST_Point(F.col("new_x"), F.col("new_y")), cartesian_crs),
    ).drop("new_x", "new_y")

    errors_df = errors_df.withColumn("closest_cell_distance_max", F.lit(closest_cell_distance_max))

    errors_df = errors_df.select(
        ColNames.user_id,
        ColNames.timestamp,
        "generated_geometry",
        ColNames.year,
        ColNames.month,
        ColNames.day,
        ColNames.loc_error,
        "closest_cell_distance_max",
    )

    return errors_df

generate_locations_for_moves(event_timestamps_df, cartesian_crs) staticmethod

Generates locations for moves based on the event timestamps dataframe. Returns a dataframe, where for each move in the event timestamps dataframe a geometry column is added, representing the location of the move.

Performs interpolation along the line between the starting move point (previous stay point) and next move point (next stay point) using the randomly generated values in the column random_fraction_on_line.

Parameters:

Name Type Description Default
event_timestamps_df DataFrame

The event timestamps dataframe.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: The event timestamps dataframe with the added geometry column.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
@staticmethod
def generate_locations_for_moves(event_timestamps_df: DataFrame, cartesian_crs: int) -> DataFrame:
    """
    Generates locations for moves based on the event timestamps dataframe.
    Returns a dataframe, where for each move in the event timestamps dataframe
    a geometry column is added, representing the location of the move.

    Performs interpolation along the line between the starting move point (previous stay point)
    and next move point (next stay point) using the randomly generated values in the column random_fraction_on_line.

    Args:
        event_timestamps_df (pyspark.sql.DataFrame): The event timestamps dataframe.

    Returns:
        pyspark.sql.DataFrame: The event timestamps dataframe with the added geometry column.
    """

    moves_with_geometry = event_timestamps_df.withColumn(
        "line",
        STF.ST_MakeLine(F.col(ColNames.geometry), F.col("next_stay_geometry")),
    )
    moves_with_geometry = moves_with_geometry.withColumn(
        "generated_geometry",
        STF.ST_SetSRID(
            STF.ST_LineInterpolatePoint(F.col("line"), F.col("random_fraction_on_line")),
            cartesian_crs,
        ),
    )

    moves_with_geometry = moves_with_geometry.select(
        ColNames.user_id,
        ColNames.timestamp,
        "generated_geometry",
        ColNames.year,
        ColNames.month,
        ColNames.day,
    )

    return moves_with_geometry

generate_nulls_in_mandatory_fields(df)

Generates null values in some fields of some rows based on configuration parameters.

Parameters:

Name Type Description Default
df DataFrame

clean synthetic data

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: synthetic records dataframe with nulls in some columns of some rows

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
def generate_nulls_in_mandatory_fields(self, df: DataFrame) -> DataFrame:
    """
    Generates null values in some fields of some rows based on configuration parameters.

    Args:
        df (pyspark.sql.DataFrame): clean synthetic data

    Returns:
        pyspark.sql.DataFrame: synthetic records dataframe with nulls in some columns of some rows
    """

    # Two probability parameters from config apply:
    # First one sets how many rows (as fraction of all rows) are selected for possible value nulling.
    # Second one sets the likelyhood for each column to be set to null.
    # If 1.0, then all mandatory columns of each selected row will be nulled.

    if self.null_row_prob == 0.0:
        # TODO logging
        return df

    # Split input dataframe to unchanged and changed portions
    df = df.cache()
    error_row_prob = self.null_row_prob
    unchanged_row_prob = 1.0 - error_row_prob
    unchanged_rows_df, error_rows_df = df.randomSplit([unchanged_row_prob, error_row_prob], seed=self.seed + 1)

    columns_for_null_selection = list(self.error_generation_allowed_columns)
    columns_for_null_selection.sort()

    random.seed(self.seed)
    columns_to_set_as_null = random.sample(
        columns_for_null_selection,
        int(round(self.column_is_null_probability * len(columns_for_null_selection), 0)),
    )

    for column in columns_to_set_as_null:
        error_rows_df = error_rows_df.withColumn(column, F.lit(None))

    error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

    # Re-combine unchanged and changed rows of the dataframe.
    return unchanged_rows_df.union(error_rows_df)

generate_out_of_bounds_dates(df)

Transforms the timestamp column values to be out of bound of the selected period, based on probabilities from configuration. Only rows with non-null timestamp values can become altered here.

Parameters:

Name Type Description Default
df DataFrame

Dataframe of clean synthetic events.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: Data where some timestamp column values are out of bounds as per config.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def generate_out_of_bounds_dates(self, df: DataFrame) -> DataFrame:
    """
    Transforms the timestamp column values to be out of bound of the selected period,
    based on probabilities from configuration.
    Only rows with non-null timestamp values can become altered here.

    Args:
        df (pyspark.sql.DataFrame): Dataframe of clean synthetic events.

    Returns:
        pyspark.sql.DataFrame: Data where some timestamp column values are out of bounds as per config.
    """

    if self.out_of_bounds_prob == 0.0:
        # TODO logging
        return df

    # Calculate approximate span in months from config parameters.
    # The parameters should approximately cover the range of "clean" dates, so that the erroneous values can be generated outside the range.

    # TODO
    # This now uses the whole input data to set the bounds
    ending_timestamp = df.agg(F.max(ColNames.timestamp)).collect()[0][0]
    starting_timestamp = df.agg(F.min(ColNames.timestamp)).collect()[0][0]
    events_span_in_months = max(1, (pd.Timestamp(ending_timestamp) - pd.Timestamp(starting_timestamp)).days / 30)

    # Split rows by null/non-null timestamp.
    df = df.cache()
    null_timestamp_df = df.where(F.col(ColNames.timestamp).isNull())
    nonnull_timestamp_df = df.where(F.col(ColNames.timestamp).isNotNull())
    df.unpersist()

    # From non-null timestamp rows, select a subset for adding errors to, depending on config parameter.
    nonnull_timestamp_df = nonnull_timestamp_df.cache()
    error_row_prob = self.out_of_bounds_prob
    unchanged_row_prob = 1.0 - error_row_prob
    unchanged_rows_df, error_rows_df = nonnull_timestamp_df.randomSplit(
        [unchanged_row_prob, error_row_prob], seed=self.seed + 3
    )
    # Combine null timestamp rows and not-modified non-null timestamp rows.
    unchanged_rows_df = unchanged_rows_df.union(null_timestamp_df)

    # Add months offset to error rows to make their timestamp values become outside expected range.
    months_to_add_col = (F.lit(2) + F.rand(seed=self.seed)) * F.lit(events_span_in_months)
    modified_date_col = F.add_months(F.col(ColNames.timestamp), months_to_add_col)
    time_col = F.date_format(F.col(ColNames.timestamp), " HH:mm:ss")
    error_rows_df = error_rows_df.withColumn(ColNames.timestamp, F.concat(modified_date_col, time_col))
    error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

    # Combine changed and unchanged rows dataframes.
    return unchanged_rows_df.union(error_rows_df)

generate_records_with_non_existant_cell_ids(records_sdf, cells_sdf, seed) staticmethod

Adds the cell_id column so that it will contain cell_ids that are not present in the cells_df dataframe, yet follow the format of a cell id.

Parameters:

Name Type Description Default
records_sdf DataFrame

generated records

required
cells_sdf DataFrame

cells dataframe

required
DataFrame

records with cell ids that are not present in the cells_df dataframe

required
Source code in multimno/components/ingestion/synthetic/synthetic_events.py
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
@staticmethod
def generate_records_with_non_existant_cell_ids(records_sdf: DataFrame, cells_sdf: DataFrame, seed) -> DataFrame:
    """
    Adds the cell_id column so that it will contain cell_ids that
    are not present in the cells_df dataframe, yet follow the format of a cell id.

    Args:
        records_sdf (DataFrame): generated records
        cells_sdf (DataFrame): cells dataframe

        DataFrame: records with cell ids that are not present in the cells_df dataframe
    """

    # Generates random cell ids for cells_df, and selects those
    # Join to records is implemented with a monotonically increasing id
    # So to limit that, this number of all unique cells is used
    # TODO check how to make this more optimal

    n_of_actual_cell_ids_as_base = cells_sdf.count()

    cells_df_with_random_cell_ids = cells_sdf[[ColNames.cell_id]].withColumn(
        "random_cell_id",
        (F.rand(seed=seed) * (999_999_999_999_999 - 10_000_000_000_000) + 10_000_000_000_000).cast("bigint"),
    )

    # Do an  left anti join to ensure that now generated cell ids are not among actual cell ids

    cells_df_inner_joined = cells_df_with_random_cell_ids[["random_cell_id"]].join(
        cells_sdf[[ColNames.cell_id]],
        on=F.col("random_cell_id") == F.col(ColNames.cell_id),
        how="leftanti",
    )

    cells_df_inner_joined = cells_df_inner_joined.withColumn("row_number", (F.monotonically_increasing_id()))
    records_sdf = records_sdf.withColumn(
        "row_number",
        (F.monotonically_increasing_id() % n_of_actual_cell_ids_as_base) + 1,
    )

    cells_df_inner_joined = cells_df_inner_joined.select(
        "row_number", F.col("random_cell_id").alias(ColNames.cell_id)
    )

    records_with_random_cell_id = records_sdf.join(cells_df_inner_joined, on="row_number", how="left").drop(
        "row_number"
    )

    records_with_random_cell_id = records_with_random_cell_id.select(
        ColNames.user_id,
        ColNames.timestamp,
        "generated_geometry",
        ColNames.cell_id,
        ColNames.loc_error,
        ColNames.year,
        ColNames.month,
        ColNames.day,
    )

    return records_with_random_cell_id

generate_same_location_duplicates(df)

Selects a subset of the previously generated data (syntactically clean data) and creates same location duplicates. If input has odd number of rows, one row is discarded.

Parameters:

Name Type Description Default
df DataFrame

Dataframe of clean synthetic events.

required

Returns:

Type Description
DataFrame

pyspark.sql.DataFrame: Dataframe with same location duplicates.

Source code in multimno/components/ingestion/synthetic/synthetic_events.py
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
def generate_same_location_duplicates(self, df: DataFrame) -> DataFrame:
    """
    Selects a subset of the previously generated data (syntactically clean data) and creates same location duplicates.
    If input has odd number of rows, one row is discarded.

    Args:
        df (pyspark.sql.DataFrame): Dataframe of clean synthetic events.

    Returns:
        pyspark.sql.DataFrame: Dataframe with same location duplicates.

    """

    if self.same_location_duplicate_prob == 0:
        return df

    # Split dataframe by whether the row has been modified during the error-adding process already.
    # Already errored rows do not get further changes.
    df = df.cache()
    previously_modified_rows_df = df.where(F.col("is_modified"))
    unmodified_rows_df = df.where(~(F.col("is_modified")))
    df.unpersist()

    # From unmodified rows, select a subset for adding errors to, depending on config parameter.
    unmodified_rows_df = unmodified_rows_df.cache()
    error_row_prob = self.same_location_duplicate_prob
    unchanged_row_prob = 1.0 - error_row_prob

    unchanged_rows_df, error_rows_df = unmodified_rows_df.randomSplit(
        [unchanged_row_prob, error_row_prob], seed=self.seed + 7
    )

    # Gather rows that are not modified in this step (combine previously-modified rows and not-selected unmodified rows).
    unchanged_rows_df = unchanged_rows_df.union(previously_modified_rows_df)

    # Select all even rows and duplicate these
    error_rows_df = error_rows_df.withColumn(
        "user_row_num",
        F.row_number().over(Window.partitionBy(ColNames.user_id).orderBy(ColNames.timestamp)),
    )

    even_rows = error_rows_df.where(F.col("user_row_num") % 2 == 0).drop("user_row_num")

    error_rows_df = even_rows.union(even_rows)
    error_rows_df = error_rows_df.withColumn("is_modified", F.lit(True))

    return unchanged_rows_df.union(error_rows_df)