Skip to content

gisco_data_ingestion

GiscoDataIngestion

Bases: Component

Source code in multimno/components/ingestion/spatial_data_ingestion/gisco_data_ingestion.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
class GiscoDataIngestion(Component):
    """ """

    COMPONENT_ID = "GiscoDataIngestion"

    def __init__(self, general_config_path: str, component_config_path: str) -> None:
        super().__init__(general_config_path, component_config_path)

    def initalize_data_objects(self):

        base_url = self.config.get(GiscoDataIngestion.COMPONENT_ID, "base_url")

        self.get_countries = self.config.getboolean(GiscoDataIngestion.COMPONENT_ID, "get_countries")

        self.get_nuts = self.config.getboolean(GiscoDataIngestion.COMPONENT_ID, "get_nuts")

        self.default_crs = self.config.getint(GiscoDataIngestion.COMPONENT_ID, "default_crs")

        self.input_data_objects = {}
        self.output_data_objects = {}
        if self.get_countries:

            countries_resolution = self.config.get(GiscoDataIngestion.COMPONENT_ID, "countries_resolution")
            countries_year = self.config.get(GiscoDataIngestion.COMPONENT_ID, "countries_year")

            countries_url = (
                f"{base_url}/countries/geojson/CNTR_RG_{countries_resolution}M_{countries_year}_4326.geojson"
            )

            self.input_data_objects["countries"] = LandingHttpGeoJsonDataObject(self.spark, countries_url, 240, 3)

            countries_do_path = self.config.get(CONFIG_BRONZE_PATHS_KEY, "countries_data_bronze")

            self.output_data_objects[BronzeCountriesDataObject.ID] = BronzeCountriesDataObject(
                self.spark,
                countries_do_path,
                [],
                self.default_crs,
            )

        if self.get_nuts:

            nuts_resolution = self.config.get(GiscoDataIngestion.COMPONENT_ID, "nuts_resolution")
            self.nuts_year = self.config.get(GiscoDataIngestion.COMPONENT_ID, "nuts_year")
            nuts_levels = self.config.get(GiscoDataIngestion.COMPONENT_ID, "nuts_levels")
            self.nuts_levels = nuts_levels.split(",")

            self.reference_country = self.config.get(GiscoDataIngestion.COMPONENT_ID, "reference_country")
            for level in self.nuts_levels:
                nuts_url = (
                    f"{base_url}/nuts/geojson/NUTS_RG_{nuts_resolution}M_{self.nuts_year}_4326_LEVL_{level}.geojson"
                )
                self.input_data_objects[f"nuts_{level}"] = LandingHttpGeoJsonDataObject(self.spark, nuts_url, 300, 5)

            geographic_zones_do_path = self.config.get(CONFIG_BRONZE_PATHS_KEY, "geographic_zones_data_bronze")

            self.output_data_objects[BronzeGeographicZonesDataObject.ID] = BronzeGeographicZonesDataObject(
                self.spark,
                geographic_zones_do_path,
                [ColNames.dataset_id],
                self.default_crs,
            )

        self.clear_destination_directory = self.config.getboolean(
            GiscoDataIngestion.COMPONENT_ID, "clear_destination_directory"
        )

        if self.clear_destination_directory:
            for do in self.output_data_objects.values():
                self.logger.info(f"Clearing {do.default_path}")
                delete_file_or_folder(self.spark, do.default_path)

    def read(self):
        # need to read the data from the input data objects separately
        pass

    def transform(self):
        self.logger.info(f"Transform method {self.COMPONENT_ID}")

        if self.get_countries:

            countries = self.get_countries_data()
            countries = utils.apply_schema_casting(countries, BronzeCountriesDataObject.SCHEMA)
            self.output_data_objects[BronzeCountriesDataObject.ID].df = countries

        if self.get_nuts:
            self.output_data_objects[BronzeGeographicZonesDataObject.ID].df = self.spark.createDataFrame(
                [], BronzeGeographicZonesDataObject.SCHEMA
            )
            for level in self.nuts_levels:

                nuts = self.get_nuts_data(level)
                nuts = nuts.withColumn(ColNames.dataset_id, F.lit("nuts"))
                nuts = utils.apply_schema_casting(nuts, BronzeGeographicZonesDataObject.SCHEMA)
                self.output_data_objects[BronzeGeographicZonesDataObject.ID].df = self.output_data_objects[
                    BronzeGeographicZonesDataObject.ID
                ].df.union(nuts)

    def get_countries_data(self) -> DataFrame:
        """
        Retrieves and processes country data.

        This method reads country data from the GISCO portal
        and processes the data by renaming columns, exploding the 'geometry' column,
        and projecting the data to a default CRS.
        The processed data is returned as a DataFrame.

        Returns:
            DataFrame: A DataFrame containing processed country data.
                    The DataFrame has columns for the ISO 2 country code, country name, and geometry.
        """

        self.input_data_objects["countries"].read()
        self.logger.info(f"got countries data")
        countries_sdf = self.input_data_objects["countries"].df
        countries_sdf = countries_sdf.withColumnRenamed("CNTR_ID", ColNames.iso2).withColumnRenamed(
            "NAME_ENGL", ColNames.name
        )

        countries_sdf = countries_sdf.withColumn("geometry", F.explode(STF.ST_Dump("geometry")))

        countries_sdf = utils.project_to_crs(countries_sdf, 4326, self.default_crs)
        return countries_sdf

    def get_nuts_data(self, level: str) -> DataFrame:
        """
        Retrieves and processes NUTS (Nomenclature of Territorial Units for Statistics) data for a specific level.

        This method reads NUTS data from GISCO portal and processes the data by
        renaming columns, filtering by reference country, and projecting the data to a default CRS.
        It also adds a 'parent_id' column that contains the ID of the parent NUTS unit for each NUTS unit,
        and adds columns for the year, month, and day with fixed values.
        The processed data is returned as a DataFrame.

        Args:
            level (str): The NUTS level for which to retrieve and process data.

        Returns:
            DataFrame: A DataFrame containing processed NUTS data.
                    The DataFrame has columns for the NUTS ID, name, ISO 2 country code, level,
                    geometry, parent ID, year, month, and day.
        """

        self.input_data_objects[f"nuts_{level}"].read()
        self.logger.info(f"got NUTS data for level {level}")
        nuts_sdf = self.input_data_objects[f"nuts_{level}"].df
        nuts_sdf = nuts_sdf.drop("id")
        nuts_sdf = nuts_sdf.filter(F.col("CNTR_CODE") == self.reference_country)

        nuts_sdf = (
            nuts_sdf.withColumnRenamed("NUTS_ID", ColNames.zone_id)
            .withColumnRenamed("NAME_LATN", ColNames.name)
            .withColumnRenamed("CNTR_CODE", ColNames.iso2)
            .withColumnRenamed("LEVL_CODE", ColNames.level)
        )

        nuts_sdf = nuts_sdf.select(
            ColNames.zone_id,
            ColNames.name,
            ColNames.iso2,
            ColNames.level,
            ColNames.geometry,
        )

        if level == 0:
            nuts_sdf = nuts_sdf.withColumn("parent_id", F.lit(None))
        else:
            nuts_sdf = nuts_sdf.withColumn("parent_id", F.expr("substring(zone_id, 1, length(zone_id)-1)"))

        nuts_sdf = utils.project_to_crs(nuts_sdf, 4326, self.default_crs)

        nuts_sdf = nuts_sdf.withColumns(
            {
                ColNames.year: F.lit(self.nuts_year),
                ColNames.month: F.lit(1),
                ColNames.day: F.lit(1),
            }
        )
        return nuts_sdf

get_countries_data()

Retrieves and processes country data.

This method reads country data from the GISCO portal and processes the data by renaming columns, exploding the 'geometry' column, and projecting the data to a default CRS. The processed data is returned as a DataFrame.

Returns:

Name Type Description
DataFrame DataFrame

A DataFrame containing processed country data. The DataFrame has columns for the ISO 2 country code, country name, and geometry.

Source code in multimno/components/ingestion/spatial_data_ingestion/gisco_data_ingestion.py
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def get_countries_data(self) -> DataFrame:
    """
    Retrieves and processes country data.

    This method reads country data from the GISCO portal
    and processes the data by renaming columns, exploding the 'geometry' column,
    and projecting the data to a default CRS.
    The processed data is returned as a DataFrame.

    Returns:
        DataFrame: A DataFrame containing processed country data.
                The DataFrame has columns for the ISO 2 country code, country name, and geometry.
    """

    self.input_data_objects["countries"].read()
    self.logger.info(f"got countries data")
    countries_sdf = self.input_data_objects["countries"].df
    countries_sdf = countries_sdf.withColumnRenamed("CNTR_ID", ColNames.iso2).withColumnRenamed(
        "NAME_ENGL", ColNames.name
    )

    countries_sdf = countries_sdf.withColumn("geometry", F.explode(STF.ST_Dump("geometry")))

    countries_sdf = utils.project_to_crs(countries_sdf, 4326, self.default_crs)
    return countries_sdf

get_nuts_data(level)

Retrieves and processes NUTS (Nomenclature of Territorial Units for Statistics) data for a specific level.

This method reads NUTS data from GISCO portal and processes the data by renaming columns, filtering by reference country, and projecting the data to a default CRS. It also adds a 'parent_id' column that contains the ID of the parent NUTS unit for each NUTS unit, and adds columns for the year, month, and day with fixed values. The processed data is returned as a DataFrame.

Parameters:

Name Type Description Default
level str

The NUTS level for which to retrieve and process data.

required

Returns:

Name Type Description
DataFrame DataFrame

A DataFrame containing processed NUTS data. The DataFrame has columns for the NUTS ID, name, ISO 2 country code, level, geometry, parent ID, year, month, and day.

Source code in multimno/components/ingestion/spatial_data_ingestion/gisco_data_ingestion.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def get_nuts_data(self, level: str) -> DataFrame:
    """
    Retrieves and processes NUTS (Nomenclature of Territorial Units for Statistics) data for a specific level.

    This method reads NUTS data from GISCO portal and processes the data by
    renaming columns, filtering by reference country, and projecting the data to a default CRS.
    It also adds a 'parent_id' column that contains the ID of the parent NUTS unit for each NUTS unit,
    and adds columns for the year, month, and day with fixed values.
    The processed data is returned as a DataFrame.

    Args:
        level (str): The NUTS level for which to retrieve and process data.

    Returns:
        DataFrame: A DataFrame containing processed NUTS data.
                The DataFrame has columns for the NUTS ID, name, ISO 2 country code, level,
                geometry, parent ID, year, month, and day.
    """

    self.input_data_objects[f"nuts_{level}"].read()
    self.logger.info(f"got NUTS data for level {level}")
    nuts_sdf = self.input_data_objects[f"nuts_{level}"].df
    nuts_sdf = nuts_sdf.drop("id")
    nuts_sdf = nuts_sdf.filter(F.col("CNTR_CODE") == self.reference_country)

    nuts_sdf = (
        nuts_sdf.withColumnRenamed("NUTS_ID", ColNames.zone_id)
        .withColumnRenamed("NAME_LATN", ColNames.name)
        .withColumnRenamed("CNTR_CODE", ColNames.iso2)
        .withColumnRenamed("LEVL_CODE", ColNames.level)
    )

    nuts_sdf = nuts_sdf.select(
        ColNames.zone_id,
        ColNames.name,
        ColNames.iso2,
        ColNames.level,
        ColNames.geometry,
    )

    if level == 0:
        nuts_sdf = nuts_sdf.withColumn("parent_id", F.lit(None))
    else:
        nuts_sdf = nuts_sdf.withColumn("parent_id", F.expr("substring(zone_id, 1, length(zone_id)-1)"))

    nuts_sdf = utils.project_to_crs(nuts_sdf, 4326, self.default_crs)

    nuts_sdf = nuts_sdf.withColumns(
        {
            ColNames.year: F.lit(self.nuts_year),
            ColNames.month: F.lit(1),
            ColNames.day: F.lit(1),
        }
    )
    return nuts_sdf