Skip to content

continuous_time_segmentation

Module that implements the Continuous Time Segmentations functionality

ContinuousTimeSegmentation

Bases: Component

A class to aggregate events into time segments.

Source code in multimno/components/execution/time_segments/continuous_time_segmentation.py
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
class ContinuousTimeSegmentation(Component):
    """
    A class to aggregate events into time segments.
    """

    COMPONENT_ID = "ContinuousTimeSegmentation"

    def __init__(self, general_config_path: str, component_config_path: str) -> None:
        super().__init__(general_config_path, component_config_path)

        self.data_period_start = datetime.strptime(
            self.config.get(self.COMPONENT_ID, "data_period_start"), "%Y-%m-%d"
        ).date()
        self.data_period_end = datetime.strptime(
            self.config.get(self.COMPONENT_ID, "data_period_end"), "%Y-%m-%d"
        ).date()

        self.min_time_stay = timedelta(seconds=self.config.getint(self.COMPONENT_ID, "min_time_stay_s"))
        self.max_time_missing_stay = timedelta(seconds=self.config.getint(self.COMPONENT_ID, "max_time_missing_stay_s"))
        self.max_time_missing_move = timedelta(seconds=self.config.getint(self.COMPONENT_ID, "max_time_missing_move_s"))
        self.max_time_missing_abroad = timedelta(
            seconds=self.config.getint(self.COMPONENT_ID, "max_time_missing_abroad_s")
        )
        self.pad_time = timedelta(seconds=self.config.getint(self.COMPONENT_ID, "pad_time_s"))

        self.max_time_unknown = timedelta(
            seconds=self.config.getint(self.COMPONENT_ID, "max_time_unknown_s", fallback=604800)
        )  # Default to 7 days if not specified

        self.event_error_flags_to_include = self.config.geteval(self.COMPONENT_ID, "event_error_flags_to_include")
        self.domains_to_include = ContinuousTimeSegmentation._get_domains_to_include(
            self.config.geteval(self.COMPONENT_ID, "domains_to_include")
        )

        # When only outbound results are requested, we still want to use domestic events to determine outbound segment end times.
        # Thus we read them, but omit the domestic (stay and move) segments from the output.
        if (Domains.OUTBOUND in self.domains_to_include) & (Domains.DOMESTIC not in self.domains_to_include):
            self.do_outbound_only = True
        else:
            self.do_outbound_only = False

        self.local_mcc = self.config.getint(self.COMPONENT_ID, "local_mcc")
        # this is for UDF
        self.segmentation_return_schema = StructType(
            [
                StructField(ColNames.start_timestamp, TimestampType()),
                StructField(ColNames.end_timestamp, TimestampType()),
                StructField(ColNames.last_event_timestamp, TimestampType()),
                StructField(ColNames.cells, ArrayType(StringType())),
                StructField(ColNames.state, ByteType()),
                StructField(ColNames.is_last, BooleanType()),
                StructField(ColNames.time_segment_id, StringType()),
                StructField(ColNames.user_id, StringType()),
                StructField(ColNames.mcc, ShortType()),
                StructField(ColNames.mnc, StringType()),
                StructField(ColNames.plmn, IntegerType()),
                StructField(ColNames.user_id_modulo, IntegerType()),
            ]
        )

        self.data_period_dates = [
            self.data_period_start + timedelta(days=i)
            for i in range((self.data_period_end - self.data_period_start).days + 1)
        ]
        self.last_time_segments = None
        self.current_date = None

    def initalize_data_objects(self):

        self.output_silver_time_segments_path = self.config.get(CONFIG_SILVER_PATHS_KEY, "time_segments_silver")
        # Output clearing
        # Done first, since the time segment existence is checked on the same directory
        clear_time_segments_directory = self.config.getboolean(
            self.COMPONENT_ID, "clear_time_segments_directory", fallback=False
        )
        if clear_time_segments_directory:
            delete_file_or_folder(self.spark, self.output_silver_time_segments_path)
        # TODO add optional date-limited deletion when not first run,
        # but consider that segments get generated not only for D but at least D+1 as well

        # Input
        self.input_data_objects = {}
        inputs = {
            "event_data_silver_flagged": SilverEventFlaggedDataObject,
            "cell_intersection_groups_data_silver": SilverCellIntersectionGroupsDataObject,
            "event_cache": EventCacheDataObject,
        }
        for key, value in inputs.items():
            path = self.config.get(CONFIG_SILVER_PATHS_KEY, key)
            if check_if_data_path_exists(self.spark, path):
                self.input_data_objects[value.ID] = value(self.spark, path)
            else:
                self.logger.warning(f"Expected path {path} to exist but it does not")
                raise ValueError(f"Invalid path for {value.ID}: {path}")

        # SilverTimeSegmentsDataObject input data can exist when initializing, but may not.
        path = self.config.get(CONFIG_SILVER_PATHS_KEY, "time_segments_silver")
        if check_if_data_path_exists(self.spark, path):
            self.input_data_objects[SilverTimeSegmentsDataObject.ID] = SilverTimeSegmentsDataObject(self.spark, path)
        else:
            self.logger.info(f"No existing time segments found at {path}.")

        # Output
        self.output_data_objects = {}
        self.output_data_objects[SilverTimeSegmentsDataObject.ID] = SilverTimeSegmentsDataObject(
            self.spark,
            self.output_silver_time_segments_path,
        )

    @get_execution_stats
    def execute(self):
        self.logger.info(f"Starting {self.COMPONENT_ID}...")

        # for every date in the data period, get the events and the intersection groups
        #  for that date + get first event of each user for the following date, calculate the time segments
        for current_date in self.data_period_dates:
            self.logger.info(f"Processing events for {current_date.strftime('%Y-%m-%d')}")
            self.current_date = current_date
            self.read()

            next_date = current_date + timedelta(days=1)

            self.current_input_events_sdf = (
                self.input_data_objects[SilverEventFlaggedDataObject.ID]
                .df.filter(
                    (
                        F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day))
                        == F.lit(current_date)
                    )
                    & (F.col(ColNames.error_flag).isin(self.event_error_flags_to_include))
                    & (F.col(ColNames.domain).isin(self.domains_to_include))
                )
                .unionByName(  # Add first event of each user from the next date
                    apply_schema_casting(
                        self.input_data_objects[EventCacheDataObject.ID].df.filter(
                            (
                                F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day))
                                == F.lit(next_date)
                            )
                            & (F.col(ColNames.is_last_event) == False)  # Matches first event of date
                        ),
                        SilverEventFlaggedDataObject.SCHEMA,
                    )
                )
            )

            # Get cell intersection groups for the current date.
            # Note: Currently the events in D+1 are assigned the cell intersection groups of D, not D+1.
            self.current_interesection_groups_sdf = (
                self.input_data_objects[SilverCellIntersectionGroupsDataObject.ID]
                .df.filter(
                    (
                        F.make_date(
                            F.col(ColNames.year),
                            F.col(ColNames.month),
                            F.col(ColNames.day),
                        )
                        == F.lit(current_date)
                    )
                )
                .select(ColNames.cell_id, ColNames.overlapping_cell_ids, ColNames.year, ColNames.month, ColNames.day)
            )

            # If there are existing time segments, retrieve each is_last time segment in D-1.
            # If not, the starting state of time segments will be initialized later.
            if SilverTimeSegmentsDataObject.ID in self.input_data_objects.keys():
                previous_date = current_date - timedelta(days=1)
                last_time_segments_selection = self.input_data_objects[SilverTimeSegmentsDataObject.ID].df.filter(
                    (
                        (
                            F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day))
                            == F.lit(previous_date)
                        )
                        & (F.col(ColNames.is_last) == True)
                    )
                    | (
                        F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day))
                        == F.lit(current_date)
                    )
                )
                # Only include UNKNOWN segments if they're within max_time_unknown of their last event
                last_time_segments_selection = last_time_segments_selection.filter(
                    (
                        (F.col(ColNames.state) != SegmentStates.UNKNOWN)
                        | (
                            F.col(ColNames.last_event_timestamp).isNull()
                            | (F.lit(current_date) - F.col(ColNames.last_event_timestamp) <= self.max_time_unknown)
                        )
                    )
                )
                # The segments selection can provide zero or more segments. Select the latest one among them as the latest previous segment.
                self.last_time_segments = (
                    last_time_segments_selection.withColumn(
                        "max_end_timestamp", F.max(ColNames.end_timestamp).over(Window.partitionBy(ColNames.user_id))
                    )
                    .where(F.col("end_timestamp") == F.col("max_end_timestamp"))
                    .drop("max_end_timestamp")
                )
            else:
                self.last_time_segments = None

            # If only outbound domain is requested, we additionally include the domestic events of outbound users (if any are present).
            if self.do_outbound_only:
                # Select distinct users in current outbound events.
                # If previous date time segments are present, also include distinct users with ABROAD state in previous date.
                if self.last_time_segments is not None:
                    distinct_outbound_user_ids_df = (
                        self.current_input_events_sdf.filter(F.col(ColNames.domain) == Domains.OUTBOUND)
                        .select(F.col(ColNames.user_id))
                        .union(
                            self.last_time_segments.where(F.col(ColNames.state) == F.lit(SegmentStates.ABROAD)).select(
                                F.col(ColNames.user_id)
                            )
                        )
                        .distinct()
                    )
                else:
                    distinct_outbound_user_ids_df = (
                        self.current_input_events_sdf.filter(F.col(ColNames.domain) == Domains.OUTBOUND)
                        .select(F.col(ColNames.user_id))
                        .distinct()
                    )
                # Retrieve domestic events of these users.
                additional_domestic_events_df = (
                    self.input_data_objects[SilverEventFlaggedDataObject.ID]
                    .df.filter(
                        (
                            F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day))
                            == F.lit(current_date)
                        )
                        & (F.col(ColNames.error_flag).isin(self.event_error_flags_to_include))
                        & (F.col(ColNames.domain) == F.lit(Domains.DOMESTIC))
                    )
                    .alias("df1")
                    .join(distinct_outbound_user_ids_df.alias("df2"), on=[ColNames.user_id], how="left_semi")
                    .select("df1.*")
                )
                self.current_input_events_sdf = self.current_input_events_sdf.unionByName(additional_domestic_events_df)

            self.transform()
            self.write()
            self.input_data_objects[SilverTimeSegmentsDataObject.ID] = self.output_data_objects[
                SilverTimeSegmentsDataObject.ID
            ]

        self.logger.info(f"Finished {self.COMPONENT_ID}")

    def transform(self):
        self.logger.info(f"Transform method {self.COMPONENT_ID}")

        current_events_sdf = self.current_input_events_sdf
        last_time_segments_sdf = self.last_time_segments
        intersections_groups_df = self.current_interesection_groups_sdf

        # Add overlapping_cell_ids list to each current date event
        current_events_sdf = (
            current_events_sdf.alias("df1")
            .join(
                intersections_groups_df.alias("df2"),
                on=[ColNames.cell_id],
                how="left",
            )
            .select(
                f"df1.{ColNames.user_id}",
                f"df1.{ColNames.timestamp}",
                f"df1.{ColNames.mcc}",
                f"df1.{ColNames.mnc}",
                f"df1.{ColNames.plmn}",
                f"df1.{ColNames.domain}",
                f"df1.{ColNames.cell_id}",
                f"df1.{ColNames.user_id_modulo}",
                ColNames.overlapping_cell_ids,
            )
        )
        if last_time_segments_sdf is None:
            # If there are no previous time segments, initialize the time segment columns of the dataframe
            current_events_sdf = (
                current_events_sdf.withColumn(ColNames.end_timestamp, F.lit(None).cast(TimestampType()))
                .withColumn(ColNames.last_event_timestamp, F.lit(None))
                .withColumn(ColNames.cells, F.lit(None))
                .withColumn(ColNames.state, F.lit(None))
                .withColumn("segment_mcc", F.lit(None))
                .withColumn("segment_mnc", F.lit(None))
                .withColumn("segment_plmn", F.lit(None))
            )
        else:
            # If previous time segments are present, join and set the time segment columns (D-1 is_last segment values)
            last_time_segments_sdf = last_time_segments_sdf.select(
                ColNames.end_timestamp,
                ColNames.last_event_timestamp,
                ColNames.cells,
                ColNames.state,
                ColNames.user_id,
                F.col(ColNames.mcc).alias("segment_mcc"),
                F.col(ColNames.mnc).alias("segment_mnc"),
                F.col(ColNames.plmn).alias("segment_plmn"),
                ColNames.user_id_modulo,
            )
            current_events_sdf = current_events_sdf.join(
                F.broadcast(last_time_segments_sdf),
                on=[ColNames.user_id_modulo, ColNames.user_id],
                how="outer",
            )

            current_events_sdf = (
                current_events_sdf.withColumn(
                    ColNames.mcc, F.coalesce(F.col(ColNames.mcc), F.col("segment_mcc"))
                ).withColumn(ColNames.mnc, F.coalesce(F.col(ColNames.mnc), F.col("segment_mnc")))
            ).drop("segment_mcc", "segment_mnc")

        # TODO: This conversion is needed for Pandas serialisation/deserialisation,
        # to remove it when user_id will be stored as string, not as binary
        current_events_sdf = current_events_sdf.withColumn(ColNames.user_id, F.hex(F.col(ColNames.user_id)))

        current_events_sdf = current_events_sdf.withColumn(
            "is_abroad_event", F.col(ColNames.domain) == F.lit(Domains.OUTBOUND)
        )

        # Partial function to pass the current date and other parameters to the aggregation function
        aggregate_segments_partial = partial(
            self.aggregate_segments,
            current_date=self.current_date,
            min_time_stay=self.min_time_stay,
            max_time_missing_stay=self.max_time_missing_stay,
            max_time_missing_move=self.max_time_missing_move,
            max_time_missing_abroad=self.max_time_missing_abroad,
            max_time_unknown=self.max_time_unknown,
            pad_time=self.pad_time,
        )

        # TODO: To test this approach with large datasets, might not be feasible
        current_segments_sdf = current_events_sdf.groupby(ColNames.user_id_modulo, ColNames.user_id).applyInPandas(
            aggregate_segments_partial, self.segmentation_return_schema
        )

        current_segments_sdf = current_segments_sdf.withColumns(
            {
                ColNames.year: F.year(ColNames.start_timestamp).cast("smallint"),
                ColNames.month: F.month(ColNames.start_timestamp).cast("tinyint"),
                ColNames.day: F.dayofmonth(ColNames.start_timestamp).cast("tinyint"),
            }
        )

        # TODO: This conversion is needed to get back to binary after Pandas serialisation/deserialisation,
        # to remove it when user_id will be stored as string, not as binary
        current_segments_sdf = current_segments_sdf.withColumn(ColNames.user_id, F.unhex(F.col(ColNames.user_id)))

        current_segments_sdf = apply_schema_casting(current_segments_sdf, SilverTimeSegmentsDataObject.SCHEMA)
        current_segments_sdf = current_segments_sdf.repartition(
            *SilverTimeSegmentsDataObject.PARTITION_COLUMNS
        ).sortWithinPartitions(ColNames.user_id, ColNames.start_timestamp)

        self.output_data_objects[SilverTimeSegmentsDataObject.ID].df = current_segments_sdf

    @staticmethod
    def aggregate_segments(
        pdf: pd.DataFrame,
        current_date: date,
        min_time_stay: timedelta,
        max_time_missing_stay: timedelta,
        max_time_missing_move: timedelta,
        max_time_missing_abroad: timedelta,
        max_time_unknown: timedelta,
        pad_time: timedelta,
    ) -> pd.DataFrame:
        """Aggregates user stays into continuous time segments based on given parameters.
        This function processes user location data and creates continuous time segments,
        taking into account various time-based parameters to determine segment boundaries and types.
        Args:
            pdf: DataFrame containing user location events.
            current_date: Date for which to generate segments.
            min_time_stay: Minimum duration required to consider a period as a stay.
            max_time_missing_stay: Maximum allowed gap in data while maintaining a stay segment.
            max_time_missing_move: Maximum allowed gap in data while maintaining a move segment.
            max_time_missing_abroad: Maximum allowed gap in data for abroad segments.
            pad_time: Time padding to add around segments.
        Returns:
            DataFrame containing aggregated time segments.
        """
        user_id, user_mod, mcc, mnc = ContinuousTimeSegmentation._get_user_metadata(pdf)

        # Prepare date boundaries
        current_date_start = datetime.combine(current_date, time(0, 0, 0))
        current_date_end = datetime.combine(current_date, time(23, 59, 59))

        # Check if there are any events for this date
        # D+1 events are not included in this check
        no_events_for_current_date = pdf[pdf[ColNames.timestamp] <= current_date_end][ColNames.timestamp].isna().all()
        no_previous_segments = pdf[ColNames.end_timestamp].isna().all()

        if no_events_for_current_date and no_previous_segments:
            # If both no events in D and no previous segments, then this is the first date before this user has any events.
            # Return empty DataFrame.
            return pd.DataFrame()
        elif no_events_for_current_date:
            # If no events in D but previous segments exist, create a single UNKNOWN segment for date D
            segments = ContinuousTimeSegmentation._handle_no_events_for_current_date(
                pdf,
                no_previous_segments,
                user_id,
                current_date_start,
                current_date_end,
                max_time_missing_abroad,
                max_time_unknown,
            )
        else:
            # If events in D exist, process them along with data of latest existing time segment to generate segments.

            # Determine if the existing previous time segment is in D or D-1.
            # If in D, we want to omit the inital time segment from output later since it has already been written.
            is_previous_segment_in_current_date = pdf[ColNames.end_timestamp].iloc[0] >= current_date_start

            # Create the initial time segment for this day
            current_ts = ContinuousTimeSegmentation._create_initial_time_segment(
                pdf,
                no_previous_segments,
                current_date_start,
                pad_time,
                user_id,
                max_time_missing_stay,
                max_time_missing_move,
                max_time_missing_abroad,
            )

            # Limit columns we actually need
            pdf_for_events = pdf[
                [ColNames.timestamp, ColNames.cell_id, ColNames.overlapping_cell_ids, "is_abroad_event", ColNames.plmn]
            ]

            # Build segments from each event
            segments = ContinuousTimeSegmentation._iterate_events(
                pdf_for_events,
                current_ts,
                user_id,
                min_time_stay,
                max_time_missing_stay,
                max_time_missing_move,
                max_time_missing_abroad,
                pad_time,
                current_date_end,
            )

            # Omit first time segment if it has already been written.
            if is_previous_segment_in_current_date:
                segments = segments[1:]

        # Convert list of segments to DataFrame
        segments_df = pd.DataFrame(segments)
        segments_df[ColNames.user_id] = user_id
        segments_df[ColNames.mcc] = mcc
        segments_df[ColNames.mnc] = mnc
        segments_df[ColNames.user_id_modulo] = user_mod

        return segments_df

    # ---------------------  No-Events Helper  ---------------------
    @staticmethod
    def _handle_no_events_for_current_date(
        pdf: pd.DataFrame,
        no_previous_segments: bool,
        user_id: str,
        day_start: datetime,
        day_end: datetime,
        max_time_missing_abroad: timedelta,
        max_time_unknown: timedelta,
    ) -> List[Dict]:
        """Handles cases where there are no events for the current date."""
        if not no_previous_segments:
            previous_segment_state = pdf[ColNames.state].iloc[0]
            previous_segment_plmn = pdf["segment_plmn"].iloc[0]
            previous_segment_last_event_timestamp = pdf[ColNames.last_event_timestamp].iloc[0]

            # If time since the last event timestamp is below threshold, create whole-day ABROAD segment
            if (previous_segment_state == SegmentStates.ABROAD) and (
                day_end - previous_segment_last_event_timestamp <= max_time_missing_abroad
            ):
                seg = ContinuousTimeSegmentation._create_time_segment(
                    day_start,
                    day_end,
                    previous_segment_last_event_timestamp,
                    [],
                    previous_segment_plmn,
                    SegmentStates.ABROAD,
                    user_id,
                )
            # Otherwise create whole-day UNKNOWN segment preserving last_event_timestamp
            else:
                seg = ContinuousTimeSegmentation._create_time_segment(
                    day_start,
                    day_end,
                    previous_segment_last_event_timestamp,  # Preserve the last timestamp
                    [],
                    None,
                    SegmentStates.UNKNOWN,
                    user_id,
                )
        # If no previous time segment, create whole-day UNKNOWN segment
        else:
            seg = ContinuousTimeSegmentation._create_time_segment(
                day_start, day_end, None, [], None, SegmentStates.UNKNOWN, user_id
            )

        seg[ColNames.is_last] = True
        return [seg]

    # ---------------------  Initial Segment Helper  ---------------------
    @staticmethod
    def _create_initial_time_segment(
        pdf: pd.DataFrame,
        no_previous_segments: bool,
        day_start: datetime,
        pad_time: timedelta,
        user_id: str,
        max_time_missing_stay: timedelta,
        max_time_missing_move: timedelta,
        max_time_missing_abroad: timedelta,
    ) -> Dict:
        """Create initial time segment based on first event and previous day information.
        Creates a time segment from the start of the day until the first event of the day,
        considering any existing segments from the previous day to maintain continuity.
        Args:
            pdf: DataFrame containing the first event data
            no_previous_segments: Boolean indicating if there are segments from previous day
            day_start: DateTime marking the start of the current day
            pad_time: TimeDelta for padding unknown segments
            user_id: String identifier for the user
            max_time_missing_stay: Maximum allowed gap for stay segments
            max_time_missing_move: Maximum allowed gap for move segments
            max_time_missing_abroad: Maximum allowed gap for abroad segments
        Returns:
            Dict containing the created time segment
        """
        first_event_time = pdf[ColNames.timestamp].iloc[0]
        previous_segment_end_time = pdf[ColNames.end_timestamp].iloc[0]
        previous_segment_last_event_timestamp = pdf[ColNames.last_event_timestamp].iloc[0]
        previous_segment_state = pdf[ColNames.state].iloc[0]
        previous_segment_plmn = pdf["segment_plmn"].iloc[0]
        previous_segment_cells = pdf[ColNames.cells].iloc[0]
        if previous_segment_cells is not None:
            previous_segment_cells = list(previous_segment_cells)  # cast to list from pandas array

        time_to_first_event = first_event_time - day_start
        adjusted_pad = min(pad_time, time_to_first_event / 2)

        if no_previous_segments:
            # No segment from previous or current day => unknown until first event
            return ContinuousTimeSegmentation._create_time_segment(
                day_start,
                first_event_time - adjusted_pad,
                None,
                [],
                None,
                SegmentStates.UNKNOWN,
                user_id,
            )

        # The previous segment can be either in D-1 or in D.
        # If D, we want to omit the first event since it has already been used to generate the segment.
        if previous_segment_end_time > day_start:
            return ContinuousTimeSegmentation._create_time_segment(
                day_start,
                previous_segment_end_time,
                previous_segment_last_event_timestamp,
                previous_segment_cells,
                previous_segment_plmn,
                previous_segment_state,
                user_id,
            )

        # Otherwise if the previous segment is in D-1, try to continue from the previous day
        gap = first_event_time - previous_segment_last_event_timestamp

        if (previous_segment_state == SegmentStates.STAY) and (gap <= max_time_missing_stay):
            return ContinuousTimeSegmentation._create_time_segment(
                day_start,
                first_event_time,
                previous_segment_last_event_timestamp,
                previous_segment_cells,
                previous_segment_plmn,
                SegmentStates.STAY,
                user_id,
            )
        elif (previous_segment_state == SegmentStates.MOVE) and (gap <= max_time_missing_move):
            return ContinuousTimeSegmentation._create_time_segment(
                day_start,
                first_event_time,
                previous_segment_last_event_timestamp,
                previous_segment_cells,
                previous_segment_plmn,
                SegmentStates.MOVE,
                user_id,
            )
        elif (previous_segment_state == SegmentStates.ABROAD) and (gap <= max_time_missing_abroad):
            return ContinuousTimeSegmentation._create_time_segment(
                day_start,
                first_event_time,
                previous_segment_last_event_timestamp,
                [],
                previous_segment_plmn,
                SegmentStates.ABROAD,
                user_id,
            )
        else:
            # Large gap or incompatible => unknown until first event
            return ContinuousTimeSegmentation._create_time_segment(
                day_start,
                first_event_time - adjusted_pad,
                previous_segment_last_event_timestamp,  # Preserve the timestamp
                [],
                None,
                SegmentStates.UNKNOWN,
                user_id,
            )

    # ---------------------  Iteration Over Events ---------------------
    @staticmethod
    def _iterate_events(
        pdf_events: pd.DataFrame,
        current_ts: Dict,
        user_id: str,
        min_time_stay: timedelta,
        max_time_missing_stay: timedelta,
        max_time_missing_move: timedelta,
        max_time_missing_abroad: timedelta,
        pad_time: timedelta,
        current_date_end: datetime,
    ) -> List[Dict]:
        """Iterates through events and constructs time segments based on continuous time segmentation rules.

        Processes a sequence of events (both abroad and local) and creates time segments according to
        specified time constraints. Each event updates the current time segment state and may generate
        new segments when conditions are met.

        Args:
            pdf_events: DataFrame containing events with timestamp, location, and other relevant information.
            current_ts: Dictionary representing the current time segment state.
            user_id: String identifier for the user.
            min_time_stay: Minimum duration required for a stay segment.
            max_time_missing_stay: Maximum allowed gap in stay segments.
            max_time_missing_move: Maximum allowed gap in movement segments.
            max_time_missing_abroad: Maximum allowed gap in abroad segments.
            pad_time: Time padding added to segments.
            current_date_end: Midnight timestamp at the end of the current date.

        Returns:
            List of dictionaries representing time segments
        """
        all_segments: List[Dict] = []

        for event in pdf_events.itertuples(index=False):
            if event.is_abroad_event:
                # Process abroad logic
                new_segments, new_current = ContinuousTimeSegmentation._process_abroad_event(
                    current_ts,
                    user_id,
                    event.timestamp,
                    event.plmn,
                    max_time_missing_abroad,
                )
            else:
                # Process local logic
                new_segments, new_current = ContinuousTimeSegmentation._process_local_event(
                    current_ts,
                    user_id,
                    event.timestamp,
                    event.cell_id,
                    event.overlapping_cell_ids,
                    event.plmn,
                    min_time_stay,
                    max_time_missing_stay,
                    max_time_missing_move,
                    pad_time,
                )

            all_segments.extend(new_segments)
            current_ts = new_current

        # Add the last segment to segments list
        all_segments.append(current_ts)

        # If the last event is from D+1, then we have up to one segment which is in both D and D+1. We want to split that segment to D and D+1 parts.
        # It is possible for such a segment to not exist if the generated segment ends exactly at midnight.
        if current_ts[ColNames.end_timestamp] > current_date_end:
            all_segments = ContinuousTimeSegmentation._handle_multi_day_segment(all_segments, current_date_end, user_id)
        else:
            # If there is no D+1 event, then this user has no events in D+1.
            # Apply separate logic to generate a segment that ends at midnight of D.
            all_segments = ContinuousTimeSegmentation._handle_last_segment_if_no_next_date_events(
                all_segments, current_date_end, user_id
            )

        return all_segments

    @staticmethod
    def _extend_segment(current_ts: Dict, new_end_time: datetime, new_cells: List[Any] = None) -> Dict:
        """
        Returns a brand new segment dictionary with an extended_ts end_time
        and optionally merged cells. Does not mutate the original.
        """
        updated_ts = current_ts.copy()
        updated_ts[ColNames.end_timestamp] = new_end_time

        if new_cells is not None:
            merged_cells = list(set(updated_ts[ColNames.cells] + new_cells))
            updated_ts[ColNames.cells] = merged_cells

        return updated_ts

    # ---------------------  Processing Each Event ---------------------
    @staticmethod
    def _process_abroad_event(
        current_ts: Dict,
        user_id: str,
        event_timestamp: datetime,
        event_plmn: str,
        max_time_missing_abroad: timedelta,
    ) -> Tuple[List[Dict], Dict]:
        """
        Decide whether to extend current ABROAD segment, create a new one,
        or start bridging with UNKNOWN if the gap is too large.
        Returns (finalized_segments, new_current_ts).
        """
        segments_to_add: List[Dict] = []

        abroad_mcc = str(event_plmn)[:3]
        current_mcc = str(current_ts.get(ColNames.plmn) or "")[:3]
        is_mcc_matched = abroad_mcc == current_mcc

        gap = event_timestamp - current_ts[ColNames.end_timestamp]

        if current_ts[ColNames.state] != SegmentStates.ABROAD:
            # Transition from a different state to ABROAD
            segments_to_add.append(current_ts)
            current_ts = ContinuousTimeSegmentation._create_time_segment(
                current_ts[ColNames.end_timestamp],
                event_timestamp,
                current_ts[ColNames.last_event_timestamp],
                [],
                event_plmn,
                SegmentStates.ABROAD,
                user_id,
            )

        elif is_mcc_matched and (gap <= max_time_missing_abroad):
            # Extend existing ABROAD
            current_ts = ContinuousTimeSegmentation._extend_segment(current_ts, event_timestamp)
            current_ts[ColNames.last_event_timestamp] = event_timestamp

        elif (not is_mcc_matched) and (gap <= max_time_missing_abroad):
            # Different MCC but within the gap => new ABROAD segment
            segments_to_add.append(current_ts)
            current_ts = ContinuousTimeSegmentation._create_time_segment(
                current_ts[ColNames.end_timestamp],
                event_timestamp,
                event_timestamp,
                [],
                event_plmn,
                SegmentStates.ABROAD,
                user_id,
            )

        else:
            # Gap too large => bridging with UNKNOWN
            segments_to_add.append(current_ts)
            current_ts = ContinuousTimeSegmentation._create_time_segment(
                current_ts[ColNames.end_timestamp],
                event_timestamp,
                None,
                [],
                None,
                SegmentStates.UNKNOWN,
                user_id,
            )

        return segments_to_add, current_ts

    @staticmethod
    def _process_local_event(
        current_ts: Dict,
        user_id: str,
        event_timestamp: datetime,
        event_cell: Any,
        overlapping_cell_ids: Any,
        event_plmn: Any,
        min_time_stay: timedelta,
        max_time_missing_stay: timedelta,
        max_time_missing_move: timedelta,
        pad_time: timedelta,
    ) -> Tuple[List[Dict], Dict]:
        """
        Decide whether to continue a STAY/UNDETERMINED, transition to MOVE,
        or insert UNKNOWN bridging based on the local event.
        Returns (finalized_segments, updated_current_ts).
        """
        segments_to_add: List[Dict] = []
        # TODO can use last_event_timestamp in some conditions instead of time since prev segment end
        gap = event_timestamp - current_ts[ColNames.end_timestamp]
        if overlapping_cell_ids is None:
            overlapping_cell_ids = []
        new_cells = list(overlapping_cell_ids)
        new_cells.append(event_cell)

        is_intersected = ContinuousTimeSegmentation._check_intersection(
            current_ts[ColNames.cells],
            new_cells,
        )

        # Case 1: UNKNOWN/ABROAD => UNDETERMINED transition
        if current_ts[ColNames.state] in [SegmentStates.UNKNOWN, SegmentStates.ABROAD]:
            segments_to_add.append(current_ts)
            current_ts = ContinuousTimeSegmentation._create_time_segment(
                current_ts[ColNames.end_timestamp],
                event_timestamp,
                event_timestamp,
                [event_cell],
                event_plmn,
                SegmentStates.UNDETERMINED,
                user_id,
            )

        # Case 2: Intersection => STAY or UNDETERMINED extension
        elif is_intersected and (gap <= max_time_missing_stay):
            if current_ts[ColNames.state] in [SegmentStates.UNDETERMINED, SegmentStates.STAY]:
                # Extend in place
                current_ts = ContinuousTimeSegmentation._extend_segment(current_ts, event_timestamp, [event_cell])
                current_ts[ColNames.last_event_timestamp] = event_timestamp
                duration = current_ts[ColNames.end_timestamp] - current_ts[ColNames.start_timestamp]
                if duration > min_time_stay:
                    current_ts[ColNames.state] = SegmentStates.STAY

            elif current_ts[ColNames.state] == SegmentStates.MOVE:
                # End MOVE => start UNDETERMINED
                segments_to_add.append(current_ts)
                current_ts = ContinuousTimeSegmentation._create_time_segment(
                    current_ts[ColNames.end_timestamp],
                    event_timestamp,
                    event_timestamp,
                    [event_cell],
                    event_plmn,
                    SegmentStates.UNDETERMINED,
                    user_id,
                )
        # Case 3: No intersection but gap <= max_time_missing_move => 'move'
        elif (not is_intersected) and (gap <= max_time_missing_move):

            midpoint = current_ts[ColNames.end_timestamp] + gap / 2
            move_ts_1 = ContinuousTimeSegmentation._create_time_segment(
                current_ts[ColNames.end_timestamp],
                midpoint,
                current_ts[ColNames.last_event_timestamp],
                current_ts[ColNames.cells],
                event_plmn,
                SegmentStates.MOVE,
                user_id,
            )
            segments_to_add.extend([current_ts, move_ts_1])

            current_ts = ContinuousTimeSegmentation._create_time_segment(
                midpoint,
                event_timestamp,
                event_timestamp,
                [event_cell],
                event_plmn,
                SegmentStates.MOVE,
                user_id,
            )

        # Case 4: Gap too large => bridging with UNKNOWN
        else:
            # First, artificially extend current_ts by pad_time
            extended_ts = ContinuousTimeSegmentation._extend_segment(
                current_ts, current_ts[ColNames.end_timestamp] + pad_time
            )

            unknown_segment = ContinuousTimeSegmentation._create_time_segment(
                extended_ts[ColNames.end_timestamp],
                event_timestamp - pad_time,
                current_ts[ColNames.last_event_timestamp],  # Preserve the timestamp
                [],
                None,
                SegmentStates.UNKNOWN,
                user_id,
            )

            segments_to_add.extend([extended_ts, unknown_segment])

            current_ts = ContinuousTimeSegmentation._create_time_segment(
                event_timestamp - pad_time,
                event_timestamp,
                event_timestamp,
                [event_cell],
                event_plmn,
                SegmentStates.UNDETERMINED,
                user_id,
            )

        return segments_to_add, current_ts

    @staticmethod
    def _create_time_segment(
        start_timestamp: datetime,
        end_timestamp: datetime,
        last_event_timestamp: datetime,
        cells: List[str],
        plmn: int,
        state: str,
        user_id: str,
    ) -> Dict:
        """
        Creates a new time segment.

        It creates a new time segment with these values, incrementing the segment ID by 1
        if a previous segment ID is provided, or setting it to 1 if not.

        Parameters:
        start_timestamp (datetime): The start timestamp of the time segment.
        end_timestamp (datetime): The end timestamp of the time segment.
        last_event_timestamp (datetime): The timestamp of the last event of the time segment.
        cells (List[str]): The cells of the time segment.
        state (str): The state of the time segment.
        previous_segment_id (Optional[int]): The ID of the previous time segment, if any.

        Returns:
        Dict: The new time segment.
        """
        segment_id_string = f"{user_id}{start_timestamp}"
        return {
            ColNames.time_segment_id: hashlib.md5(segment_id_string.encode()).hexdigest(),
            ColNames.start_timestamp: start_timestamp,
            ColNames.end_timestamp: end_timestamp,
            ColNames.last_event_timestamp: last_event_timestamp,
            ColNames.cells: cells,
            ColNames.plmn: plmn,
            ColNames.state: state,
            ColNames.is_last: False,
        }

    @staticmethod
    def _handle_multi_day_segment(all_segments: list[dict], current_date_end: datetime, user_id: str) -> list[dict]:
        """
        Handles segments which cross date bounds (midnight).
        These segments are split into two halves on midnight, one segment in D and one in D+1.
        At most one such segment can exist per user per date.

        Args:
            all_segments (list[dict]): list of segments
            current_date_end (datetime): midnight timestamp of current date end
            user_id (str): user identifier

        Returns:
            list[dict]: list of segments with midnight-crossing segment replaced by its two halves
        """
        # Reverse-order iterate over segments.
        for i in reversed(range(0, len(all_segments))):
            seg = all_segments[i]
            # If current segment ends within D, it is the last segment of D.
            # Mark it as such. End iterating.
            if seg[ColNames.end_timestamp] <= current_date_end:
                all_segments[i][ColNames.is_last] = True
                return all_segments
            # If current segment crosses midnight, split it into two segments.
            # Mark the half in D as last segment of D. End iterating.
            if (seg[ColNames.start_timestamp] <= current_date_end) & (seg[ColNames.end_timestamp] > current_date_end):
                # Split the segment into two on midnight
                ts1 = ContinuousTimeSegmentation._create_time_segment(
                    start_timestamp=seg[ColNames.start_timestamp],
                    end_timestamp=current_date_end,
                    last_event_timestamp=seg[ColNames.last_event_timestamp],
                    cells=seg[ColNames.cells],
                    plmn=seg[ColNames.plmn],
                    state=seg[ColNames.state],
                    user_id=user_id,
                )
                ts1[ColNames.is_last] = True

                ts2 = ContinuousTimeSegmentation._create_time_segment(
                    start_timestamp=current_date_end + timedelta(seconds=1),
                    end_timestamp=seg[ColNames.end_timestamp],
                    last_event_timestamp=seg[ColNames.last_event_timestamp],
                    cells=seg[ColNames.cells],
                    plmn=seg[ColNames.plmn],
                    state=seg[ColNames.state],
                    user_id=user_id,
                )
                # Remove existing segment, add two new segments, end processing
                all_segments = all_segments[:i] + [ts1, ts2] + all_segments[i + 1 :]
                return all_segments

    @staticmethod
    def _handle_last_segment_if_no_next_date_events(
        all_segments: list[dict], current_date_end: datetime, user_id: str
    ) -> list[dict]:
        """
        Handles last segment generation if there are no events for the next date.
        Generates an UNKNOWN segment which starts at the end of the existing segment and ends at midnight.

        Args:
            all_segments (list[dict]): list of current date segments
            current_date_end (datetime): midnight timestamp of the current date end
            user_id (str): user identifier
        Returns:
            list[dict]: list of current date segments with added last segment
        """
        # Generate segment from last segment end until D midight
        # TODO what type? UNKNOWN? Extend last segment?
        seg = all_segments[-1]
        ts = ContinuousTimeSegmentation._create_time_segment(
            start_timestamp=seg[ColNames.end_timestamp],
            end_timestamp=current_date_end,
            last_event_timestamp=seg[ColNames.last_event_timestamp],  # Preserve the timestamp
            cells=[],
            plmn=None,
            state=SegmentStates.UNKNOWN,
            user_id=user_id,
        )
        all_segments.append(ts)

        # Mark final segment as is_last
        all_segments[-1][ColNames.is_last] = True

        return all_segments

    @staticmethod
    def _get_user_metadata(pdf: pdDataFrame) -> Tuple[str, int, str]:
        """
        Gets user_id, user_id_modulo, mcc, mnc from Pandas DataFrame containing columns with the corresponding names.
        Values from the first row of the dataframe are used.

        Args:
            pdf (pdDataFrame): Pandas DataFrame

        Returns:
            Tuple[str, int, str]: user_id, user_id_modulo, mcc, mnc
        """
        user_id = pdf[ColNames.user_id][0]
        user_id_mod = pdf[ColNames.user_id_modulo][0]
        mcc = pdf[ColNames.mcc][0]
        mnc = pdf[ColNames.mnc][0]
        return user_id, user_id_mod, mcc, mnc

    @staticmethod
    def _check_intersection(
        previous_ts_cells: List[str],
        current_event_overlapping_cell_ids: List[str],
    ) -> bool:
        """
        Checks if there is an intersection between the existing time segment and the current event.

        This method takes two lists of cells, one for the cells included in the existing time segment and the other for
        the overlapping cell ids of the current event's cell.
        The time segment intersects with the event if each of the time segment's cells are included in the event's overlapping cell ids list.

        A segment with no cells cannot intersect and returns False.

        Parameters:
        previous_ts_cells (List[str]): The cells of the existing time segment.
        current_event_overlapping_cell_ids (List[str]): Cells the current event's cell overlaps with, including itself.

        Returns:
        bool: True if there is an intersection, False otherwise.
        """
        if len(previous_ts_cells) == 0:
            is_intersected = False
        else:
            is_intersected = set(previous_ts_cells).issubset(set(current_event_overlapping_cell_ids))
        return is_intersected

    @staticmethod
    def _get_domains_to_include(
        config_domains_to_include: List[str],
    ) -> List[str]:
        """
        Returns a list of domains to include in the component.

        Parses the configuration for domain names (inbound, domestic, outbound) and maps to the corresponding Domains constants.

        Parameters:
        config_domains_to_include (List[str]): List of domains to include from the configuration file.

        Returns:
        List[str]: List of Domains to include in the segmentation.
        """
        domains_to_include = []
        for val in config_domains_to_include:
            if val == "outbound":
                domains_to_include.append(Domains.OUTBOUND)
            elif val == "inbound":
                domains_to_include.append(Domains.INBOUND)
            elif val == "domestic":
                domains_to_include.append(Domains.DOMESTIC)
            else:
                raise ValueError(f"Value {val} does not match any domain name (inbound, domestic, outbound)")

        if len(domains_to_include) == 0:
            raise ValueError("No domain names specfied in configuration")

        return domains_to_include

aggregate_segments(pdf, current_date, min_time_stay, max_time_missing_stay, max_time_missing_move, max_time_missing_abroad, max_time_unknown, pad_time) staticmethod

Aggregates user stays into continuous time segments based on given parameters. This function processes user location data and creates continuous time segments, taking into account various time-based parameters to determine segment boundaries and types. Args: pdf: DataFrame containing user location events. current_date: Date for which to generate segments. min_time_stay: Minimum duration required to consider a period as a stay. max_time_missing_stay: Maximum allowed gap in data while maintaining a stay segment. max_time_missing_move: Maximum allowed gap in data while maintaining a move segment. max_time_missing_abroad: Maximum allowed gap in data for abroad segments. pad_time: Time padding to add around segments. Returns: DataFrame containing aggregated time segments.

Source code in multimno/components/execution/time_segments/continuous_time_segmentation.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
@staticmethod
def aggregate_segments(
    pdf: pd.DataFrame,
    current_date: date,
    min_time_stay: timedelta,
    max_time_missing_stay: timedelta,
    max_time_missing_move: timedelta,
    max_time_missing_abroad: timedelta,
    max_time_unknown: timedelta,
    pad_time: timedelta,
) -> pd.DataFrame:
    """Aggregates user stays into continuous time segments based on given parameters.
    This function processes user location data and creates continuous time segments,
    taking into account various time-based parameters to determine segment boundaries and types.
    Args:
        pdf: DataFrame containing user location events.
        current_date: Date for which to generate segments.
        min_time_stay: Minimum duration required to consider a period as a stay.
        max_time_missing_stay: Maximum allowed gap in data while maintaining a stay segment.
        max_time_missing_move: Maximum allowed gap in data while maintaining a move segment.
        max_time_missing_abroad: Maximum allowed gap in data for abroad segments.
        pad_time: Time padding to add around segments.
    Returns:
        DataFrame containing aggregated time segments.
    """
    user_id, user_mod, mcc, mnc = ContinuousTimeSegmentation._get_user_metadata(pdf)

    # Prepare date boundaries
    current_date_start = datetime.combine(current_date, time(0, 0, 0))
    current_date_end = datetime.combine(current_date, time(23, 59, 59))

    # Check if there are any events for this date
    # D+1 events are not included in this check
    no_events_for_current_date = pdf[pdf[ColNames.timestamp] <= current_date_end][ColNames.timestamp].isna().all()
    no_previous_segments = pdf[ColNames.end_timestamp].isna().all()

    if no_events_for_current_date and no_previous_segments:
        # If both no events in D and no previous segments, then this is the first date before this user has any events.
        # Return empty DataFrame.
        return pd.DataFrame()
    elif no_events_for_current_date:
        # If no events in D but previous segments exist, create a single UNKNOWN segment for date D
        segments = ContinuousTimeSegmentation._handle_no_events_for_current_date(
            pdf,
            no_previous_segments,
            user_id,
            current_date_start,
            current_date_end,
            max_time_missing_abroad,
            max_time_unknown,
        )
    else:
        # If events in D exist, process them along with data of latest existing time segment to generate segments.

        # Determine if the existing previous time segment is in D or D-1.
        # If in D, we want to omit the inital time segment from output later since it has already been written.
        is_previous_segment_in_current_date = pdf[ColNames.end_timestamp].iloc[0] >= current_date_start

        # Create the initial time segment for this day
        current_ts = ContinuousTimeSegmentation._create_initial_time_segment(
            pdf,
            no_previous_segments,
            current_date_start,
            pad_time,
            user_id,
            max_time_missing_stay,
            max_time_missing_move,
            max_time_missing_abroad,
        )

        # Limit columns we actually need
        pdf_for_events = pdf[
            [ColNames.timestamp, ColNames.cell_id, ColNames.overlapping_cell_ids, "is_abroad_event", ColNames.plmn]
        ]

        # Build segments from each event
        segments = ContinuousTimeSegmentation._iterate_events(
            pdf_for_events,
            current_ts,
            user_id,
            min_time_stay,
            max_time_missing_stay,
            max_time_missing_move,
            max_time_missing_abroad,
            pad_time,
            current_date_end,
        )

        # Omit first time segment if it has already been written.
        if is_previous_segment_in_current_date:
            segments = segments[1:]

    # Convert list of segments to DataFrame
    segments_df = pd.DataFrame(segments)
    segments_df[ColNames.user_id] = user_id
    segments_df[ColNames.mcc] = mcc
    segments_df[ColNames.mnc] = mnc
    segments_df[ColNames.user_id_modulo] = user_mod

    return segments_df