present_population_estimation
Module for estimating the present population of a geographical area at a given time.
PresentPopulationEstimation
Bases: Component
This component calculates the estimated actual population (number of people spatially present) for a specified spatial area (country, municipality, grid).
NOTE: In the current variant 1 of implementation, this module implements only the counting of one MNO's users instead of extrapolating to the entire population.
Source code in multimno/components/execution/present_population/present_population_estimation.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
calculate_devices_per_cell(events_df, time_point)
Calculates the number of unique users/devices per cell for one time point based on the events inside the interval around the time_point. If a device has multiple events inside the interval, the one closest to the time_point is selected. In case of a tie, the earliest event is chosen.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
events_df
|
DataFrame
|
Event data. For each user, expected to contain all of that user's events that can be included in this time point. |
required |
time_point
|
datetime
|
The timestamp for which the population counts are calculated for. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Count of devices per cell |
Source code in multimno/components/execution/present_population/present_population_estimation.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
calculate_population_per_grid(devices_per_cell_df, cell_conn_prob_df)
Calculates population estimates for each grid tile Using an iterative Bayesian process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
devices_per_cell_df
|
DataFrame
|
(cell_id, device_count) dataframe |
required |
cell_conn_prob_df
|
DataFrame
|
(grid_id, cell_id, cell_connection_probability) dataframe |
required |
Returns: DataFrame: (grid_id, population) dataframe
Source code in multimno/components/execution/present_population/present_population_estimation.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
get_cell_connection_probabilities(time_point)
Filter the cell connection probabilities of the dates needed for the time_point provided. Args: time_point (datetime.datetime): timestamp of time point
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
(grid_id, cell_id, cell_connection_probability) dataframe |
Source code in multimno/components/execution/present_population/present_population_estimation.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
generate_time_points(period_start, period_end, time_point_gap_s)
Generates time points within the specified period with the specified spacing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
period_start
|
datetime
|
Start timestamp of generation. |
required |
period_end
|
datetime
|
End timestamp of generation. |
required |
time_point_gap_s
|
timedelta
|
Time delta object defining the space between consectuive time points. |
required |
Returns:
Type | Description |
---|---|
List[datetime]
|
[datetime]: List of time point timestamps. |
Source code in multimno/components/execution/present_population/present_population_estimation.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
select_where_dates_include_time_point_window(time_point, tolerance_period_s, df)
Applies filtering to the DataFrame to omit rows from dates which are outside time point boundaries. The purpose is to leverage our Parquet partitioning schema (partitioned by year, month, day) and use predicate pushdown to avoid reading event data from irrelevant days.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_point
|
datetime
|
Fixed timestamp to calculate results for. |
required |
tolerance_period_s
|
int
|
Time window size. Time in seconds before and after the time point |
required |
df
|
DataFrame
|
DataFrame of event data storage partitioned by year, month, day. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
df including only data from dates which include some part of the time point's window. |
Source code in multimno/components/execution/present_population/present_population_estimation.py
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
|