cell_footprint_estimation
Module that cleans RAW MNO Event data.
CellFootprintEstimation
Bases: Component
This class is responsible for modeling the signal strength of a cellular network.
It takes as input a configuration file and a set of data representing the network's cells and their properties. The class then calculates the signal strength at various points of a grid, taking into account factors such as the distance to the cell, the azimuth and elevation angles, and the directionality of the cell.
The class provides methods for adjusting the signal strength based on the horizontal and vertical angles, imputing default cell properties.
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 |
|
add_z_to_point_geometry(sdf, geometry_col, use_elevation)
staticmethod
Adds z value to the point geometry (grid centroids). If elevation is taken into account, set Z values from z column, otherwise to 0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
Input DataFrame. |
required |
use_elevation
|
bool
|
Whether to use elevation. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame with z value added to point geometry. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
|
calculate_cartesian_distances(sdf)
staticmethod
Calculates cartesian distances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
Input DataFrame. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame with calculated cartesian distances. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
|
calculate_distance_power_loss(sdf)
staticmethod
Calculates distance power loss caluclated as power - path_loss_exponent * 10 * log10(distance_to_cell_3D).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
Input DataFrame. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame with calculated distance power loss. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
|
calculate_effective_coverage(cells_sdf, grid_sdf)
Calculates effective cell coverage center and range based on desired signal domincance threshold.
The function first separates the cells into omnidirectional and directional types, then calculates the signal dominance threshold points for each type. The function then calculates the effective coverage center and range for each cell based on the signal dominance threshold points.
Parameters: cells_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing cell information, including directionality. grid_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing grid used for calculating signal dominance.
pyspark.sql.DataFrame: A Spark DataFrame with the effective coverage information for each cell, including the coverage center and effective range. The DataFrame excludes intermediate columns used during the calculation.
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
|
calculate_horizontal_angle_power_adjustment(sdf)
staticmethod
Adjusts the signal strength of each cell in the input DataFrame based on the horizontal angle.
This function calculates the azimuth angle between each cell and a reference point, projects the data to the elevation plane, and adjusts the signal strength based on the relative azimuth angle and the distance to the cell. The adjustment is calculated using a normal distribution model of signal strength.
Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
A Spark DataFrame |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 |
|
calculate_signal_dominance(cell_grid_gdf, do_elevation_angle_adjustments, do_azimuth_angle_adjustments)
Calculates the signal dominance for each cell in a grid DataFrame, optionally adjusting for elevation and azimuth angles.
This function performs a series of adjustments on the signal strength of each cell in the provided grid DataFrame to calculate the signal dominance. The adjustments include distance power loss, horizontal angle power adjustment (azimuth), and vertical angle power adjustment (elevation), based on the provided flags. Finally, it converts the adjusted signal strength into signal dominance using a logistic function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cell_grid_gdf
|
GeoDataFrame
|
A GeoDataFrame containing the cell grid data. |
required |
do_elevation_angle_adjustments
|
bool
|
Flag to indicate whether to perform elevation angle adjustments. |
required |
do_azimuth_angle_adjustments
|
bool
|
Flag to indicate whether to perform azimuth angle adjustments. |
required |
Returns:
Name | Type | Description |
---|---|---|
GeoDataFrame |
The input GeoDataFrame with an additional column for signal dominance, after applying the specified adjustments. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
|
calculate_vertical_angle_power_adjustment(sdf)
staticmethod
Adjusts the signal strength of each cell in the input DataFrame based on the vertical angle.
This function calculates the elevation angle between each cell and a reference point, and adjusts the signal strength based on the relative elevation angle and the distance to the cell. The adjustment is calculated using a normal distribution model of signal strength.
Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
A Spark DataFrame |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 |
|
create_cell_point_geometry(sdf, use_elevation)
staticmethod
Creates cell point geometry. If elevation is taken into account, set Z values from z column, otherwise to 0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
Input DataFrame. |
required |
use_elevation
|
bool
|
Whether to use elevation. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame with cell point geometry. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
create_default_properties_df()
Creates a DataFrame with default cell properties from config dict.
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame with default cell properties. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
331 332 333 334 335 336 337 338 339 340 |
|
create_mapping(db_back, signal_front_back_difference_col)
staticmethod
Creates a mapping between standard deviation and the angle at which the signal strength falls to 3 dB below its maximum value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
db_back
|
float
|
The difference in signal strength in dB between the front and back of the signal. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame where each row corresponds to a |
DataFrame
|
standard deviation and contains the corresponding angle. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
find_sd(beam_width, mapping)
staticmethod
Finds the standard deviation corresponding to the given beam width using the provided mapping.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
beam_width
|
float
|
The width of the beam in degrees. |
required |
mapping
|
DataFrame
|
A DataFrame where each row corresponds to a standard deviation and contains the corresponding angle. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The standard deviation corresponding to the given beam width. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
|
get_angular_adjustments_sd_mapping(cells_sdf, beam_width_col, signal_front_back_difference_col, angular_adjustment_type)
Calculates standard deviations in signal strength based on beam width and front-back cell signal difference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cells_sdf
|
DataFrame
|
Input DataFrame. |
required |
beam_width_col
|
str
|
Column name for the beam width. |
required |
signal_front_back_difference_col
|
str
|
Column name for the signal front-back difference. |
required |
angular_adjustment_type
|
str
|
Type of angular adjustment. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame with angular adjustments standard deviation mapping. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|
get_min3db(sd, db_back)
staticmethod
Finds the angle at which the signal strength falls to 3 dB below its maximum value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sd
|
float
|
The standard deviation of the normal distribution modeling the signal strength. |
required |
db_back
|
float
|
The difference in signal strength in dB between the front and back of the signal. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The angle at which the signal strength falls to 3 dB below its maximum value. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
|
get_sd_to_signal_back_loss_mappings(cells_sdf, signal_front_back_difference_col)
staticmethod
Generates a DataFrame with mapping of signal strength standard deviation for each elevation/azimuth angle degree.
Parameters: cells_sdf (DataFrame): A Spark DataFrame containing information about the cells. signal_front_back_difference_col (str): The name of the column that contains the difference in signal strength between the front and back of the cell.
Returns: DataFrame: A pandas DataFrame with standard deviation mappings.
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
|
get_signal_dominance_threshold_point(cells_sdf, grid_sdf, point_type)
Calculates the signal dominance threshold points in cell maximum range.
For omnidirectional cell types, the signal dominance threshold point is calculated as the furthest point along 90 degrees azimuth direction where signal dominance is less than the threshold. For directional cells types, two signal dominance threshold points are calculated: 1. the furthest point along the directionality angle direction where signal dominance is less than the threshold 2. the furthest point opposite to the directionality angle direction where signal dominance is less than the threshold
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cells_sdf
|
DataFrame
|
The DataFrame containing cell information. |
required |
grid_sdf
|
DataFrame
|
The DataFrame containing grid information. |
required |
point_type
|
str
|
The type of point to calculate the signal dominance threshold for. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
The updated cells DataFrame with the signal dominance threshold point added. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
|
impute_default_cell_properties(sdf)
Imputes default cell properties for null values in the input DataFrame using default properties for cell types from config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
Input DataFrame. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame with imputed default cell properties. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
join_sd_mapping(sdf, sd_mapping_sdf, beam_width_col, signal_front_back_difference_col, sd_col)
staticmethod
Joins DataFrame with standard deviation mapping.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
Input DataFrame. |
required |
sd_mapping_sdf
|
DataFrame
|
DataFrame with standard deviation mapping. |
required |
beam_width_col
|
str
|
Column name for the beam width. |
required |
signal_front_back_difference_col
|
str
|
Column name for the signal front-back difference. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame after joining with standard deviation mapping. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
norm_dBloss(a, sd, db_back)
staticmethod
Computes the loss in signal strength in dB as a function of angle from the direction of maximum signal strength.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
float
|
The angle from the direction of maximum signal strength. |
required |
sd
|
float
|
The standard deviation of the normal distribution modeling the signal strength. |
required |
db_back
|
float
|
The difference in signal strength in dB between the front and back of the signal. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The loss in signal strength in dB at the given angle. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
|
norm_dBloss_spark(sdf, angle_col, sd_col, db_back_col)
staticmethod
Normalizes the dB loss in a Spark DataFrame based on the angle, standard deviation, and dB back loss.
This method performs several operations to normalize the dB loss for each row in the Spark DataFrame:
1. Normalizes the angle to a range of [-180, 180) degrees.
2. Calculates the normal distribution of the normalized angles with a mean of 0 and a standard deviation specified by sd_col
.
3. Calculates the normal distribution for angles 0 and 180 degrees using precomputed values, with a mean of 0 and the same standard deviation.
4. Computes an inflation factor based on the dB back loss column and the difference between the normal distributions at 0 and 180 degrees.
5. Calculates the normalized dB loss by adjusting the normal distribution of the angle with the inflation factor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
The input Spark DataFrame containing the data. |
required |
angle_col
|
str
|
The name of the column that contains the angles to be normalized. |
required |
sd_col
|
str
|
The name of the column that contains the standard deviation values for the normal distribution calculation. |
required |
db_back_col
|
str
|
The name of the column in that contains the dB back loss values used to calculate the inflation factor. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A Spark DataFrame with the normalized dB loss added and intermediate columns removed. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 |
|
normal_distribution(x, mean, sd)
staticmethod
Computes the value of the normal distribution with the given mean and standard deviation at the given point.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
float
|
The point at which to evaluate the normal distribution. |
required |
mean
|
float
|
The mean of the normal distribution. |
required |
sd
|
float
|
The standard deviation of the normal distribution. |
required |
return_type
|
str
|
The desired return type, either 'np_array' or 'list'. |
required |
Returns:
Type | Description |
---|---|
Union[array, list]
|
np.array or list: The value of the normal distribution at the given point, |
Union[array, list]
|
returned as either a numpy array or a list. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
|
normal_distribution_col(x_col, mean_col, sd_col)
staticmethod
Computes the value of the normal distribution for each row in a DataFrame based on the provided columns for the point, mean, and standard deviation.
This function applies the normal distribution formula to each row of the DataFrame using the specified columns for the point (x), mean, and standard deviation (sd). The normal distribution formula used is:
f(x) = (1 / (sqrt(2 * pi) * sd)) * exp(-0.5 * ((x - mean) / sd)^2)
where x
is the value at which the normal distribution is evaluated,
mean
is the mean of the distribution, and sd
is the standard deviation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_col
|
Column
|
A Spark DataFrame column representing the point at which to evaluate the normal distribution. |
required |
mean_col
|
Column
|
A Spark DataFrame column representing the mean of the normal distribution. |
required |
sd_col
|
Column
|
A Spark DataFrame column representing the standard deviation of the normal distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
Column |
Column
|
A Spark DataFrame column with the computed normal distribution values for each row. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 |
|
prune_max_cells_per_grid_tile(sdf, max_cells_per_grid_tile)
staticmethod
Prunes rows from the DataFrame exceeding the maximum number of cells allowed per grid tile.
The rows are ordered by signal dominance in descending order, and only the top 'max_cells_per_grid_tile' rows are kept for each grid tile.
Parameters: sdf (DataFrame): A Spark DataFrame containing the signal dominance data. max_cells_per_grid_tile (int): The maximum number of cells allowed per grid tile.
Returns: DataFrame: A DataFrame with rows exceeding the maximum number of cells per grid tile removed.
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 |
|
prune_signal_difference_from_best(sdf, difference_threshold)
staticmethod
Prunes rows from the DataFrame based on a threshold of signal dominance difference.
The rows are ordered by signal dominance in descending order, and only the rows where the difference in signal dominance from the maximum is less than the threshold are kept for each grid tile.
Parameters: sdf (DataFrame): A Spark DataFrame containing the signal dominance data. threshold (float): The threshold for signal dominance difference in percentage.
Returns: DataFrame: A DataFrame with rows pruned based on the signal dominance difference threshold.
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 |
|
prune_small_signal_dominance(sdf, signal_dominance_threshold)
staticmethod
Prunes rows from the DataFrame where the signal dominance is less than or equal to the provided threshold.
Parameters: sdf (DataFrame): A Spark DataFrame containing the signal dominance data. signal_dominance_threshold (float): The threshold for pruning small signal dominance values.
Returns: DataFrame: A DataFrame with rows having signal dominance less than or equal to the threshold removed.
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 |
|
signal_strength_to_signal_dominance(sdf, logistic_function_steepness, logistic_function_midpoint)
staticmethod
Converts signal strength to signal dominance using a logistic function. Methodology from A Bayesian approach to location estimation of mobile devices from mobile network operator data. Tennekes and Gootzen (2022).
The logistic function is defined as 1 / (1 + exp(-scale)), where scale is (signal_strength - logistic_function_midpoint) * logistic_function_steepness.
Parameters: sdf (DataFrame): SignalStrenghtDataObject Spark DataFrame. logistic_function_steepness (float): The steepness parameter for the logistic function. logistic_function_midpoint (float): The midpoint parameter for the logistic function.
Returns: DataFrame: A Spark DataFrame with the signal dominance added as a new column.
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 |
|
spatial_join_within_distance(sdf_from, sdf_to, geometry_col, within_distance_col)
staticmethod
Performs a spatial join within a specified distance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf_from
|
DataFrame
|
Input DataFrame. |
required |
sdf_to
|
DataFrame
|
DataFrame to join with. |
required |
within_distance_col
|
str
|
Column name for the within distance. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame after performing the spatial join. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
watt_to_dbm(sdf)
staticmethod
Converts power from watt to dBm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sdf
|
DataFrame
|
Input DataFrame. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
DataFrame with power converted to dBm. |
Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
467 468 469 470 471 472 473 474 475 476 477 478 |
|