Skip to content

cell_footprint_estimation

Module that cleans RAW MNO Event data.

CellFootprintEstimation

Bases: Component

This class is responsible for modeling the signal strength of a cellular network.

It takes as input a configuration file and a set of data representing the network's cells and their properties. The class then calculates the signal strength at various points of a grid, taking into account factors such as the distance to the cell, the azimuth and elevation angles, and the directionality of the cell.

The class provides methods for adjusting the signal strength based on the horizontal and vertical angles, imputing default cell properties.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
class CellFootprintEstimation(Component):
    """
    This class is responsible for modeling the signal strength of a cellular network.

    It takes as input a configuration file and a set of data representing the network's cells and their properties.
    The class then calculates the signal strength at various points of a grid, taking into account factors such
    as the distance to the cell, the azimuth and elevation angles, and the directionality of the cell.

    The class provides methods for adjusting the signal strength based on the horizontal and vertical angles,
    imputing default cell properties.
    """

    COMPONENT_ID = "CellFootprintEstimation"

    def __init__(self, general_config_path: str, component_config_path: str) -> None:
        super().__init__(general_config_path, component_config_path)

        self.data_period_start = datetime.datetime.strptime(
            self.config.get(self.COMPONENT_ID, "data_period_start"), "%Y-%m-%d"
        ).date()
        self.data_period_end = datetime.datetime.strptime(
            self.config.get(self.COMPONENT_ID, "data_period_end"), "%Y-%m-%d"
        ).date()

        self.do_azimuth_angle_adjustments = self.config.getboolean(self.COMPONENT_ID, "do_azimuth_angle_adjustments")
        self.do_elevation_angle_adjustments = self.config.getboolean(
            self.COMPONENT_ID, "do_elevation_angle_adjustments"
        )
        self.default_cell_properties = self.config.geteval(self.COMPONENT_ID, "default_cell_physical_properties")

        self.logistic_function_steepness = self.config.getfloat(self.COMPONENT_ID, "logistic_function_steepness")
        self.logistic_function_midpoint = self.config.getfloat(self.COMPONENT_ID, "logistic_function_midpoint")
        self.signal_dominance_treshold = self.config.getfloat(self.COMPONENT_ID, "signal_dominance_treshold")
        self.max_cells_per_grid_tile = self.config.getfloat(self.COMPONENT_ID, "max_cells_per_grid_tile")

        self.do_dynamic_coverage_range_calculation = self.config.getboolean(
            self.COMPONENT_ID, "do_dynamic_coverage_range_calculation"
        )
        self.repartition_number = self.config.getint(self.COMPONENT_ID, "repartition_number")
        self.coverage_range_line_buffer = self.config.getint(self.COMPONENT_ID, "coverage_range_line_buffer")

        self.difference_from_best_sd_treshold = self.config.getfloat(
            self.COMPONENT_ID, "difference_from_best_sd_treshold"
        )
        self.do_sd_treshold_prunning = self.config.getboolean(self.COMPONENT_ID, "do_sd_treshold_prunning")
        self.do_max_cells_per_tile_prunning = self.config.getboolean(
            self.COMPONENT_ID, "do_max_cells_per_tile_prunning"
        )
        self.do_difference_from_best_sd_prunning = self.config.getboolean(
            self.COMPONENT_ID, "do_difference_from_best_sd_prunning"
        )

        self.data_period_dates = [
            self.data_period_start + datetime.timedelta(days=i)
            for i in range((self.data_period_end - self.data_period_start).days + 1)
        ]

        self.sd_azimuth_mapping_sdf = None
        self.sd_elevation_mapping_sdf = None
        self.current_date = None
        self.current_cells_sdf = None

    def initalize_data_objects(self):

        self.clear_destination_directory = self.config.getboolean(self.COMPONENT_ID, "clear_destination_directory")
        self.cartesian_crs = self.config.get(CellFootprintEstimation.COMPONENT_ID, "cartesian_crs")
        self.use_elevation = self.config.getboolean(CellFootprintEstimation.COMPONENT_ID, "use_elevation")
        self.do_do_cell_intersection_groups_calculation = self.config.getboolean(
            self.COMPONENT_ID, "do_cell_intersection_groups_calculation"
        )

        self.input_data_objects = {}
        # Input
        inputs = {
            "network_data_silver": SilverNetworkDataObject,
        }
        if self.use_elevation:
            inputs["enriched_grid_data_silver"] = SilverEnrichedGridDataObject
        else:
            inputs["grid_data_silver"] = SilverGridDataObject

        for key, value in inputs.items():
            path = self.config.get(CONFIG_SILVER_PATHS_KEY, key)
            if check_if_data_path_exists(self.spark, path):
                self.input_data_objects[value.ID] = value(self.spark, path)
            else:
                self.logger.warning(f"Expected path {path} to exist but it does not")
                raise ValueError(f"Invalid path for {value.ID}: {path}")

        # Output
        self.output_data_objects = {}
        cell_footprint_path = self.config.get(CONFIG_SILVER_PATHS_KEY, "cell_footprint_data_silver")

        if self.clear_destination_directory:
            delete_file_or_folder(self.spark, cell_footprint_path)

        self.output_data_objects[SilverCellFootprintDataObject.ID] = SilverCellFootprintDataObject(
            self.spark, cell_footprint_path
        )

        if self.do_do_cell_intersection_groups_calculation:
            self.silver_cell_intersection_groups_path = self.config.get(
                CONFIG_SILVER_PATHS_KEY, "cell_intersection_groups_data_silver"
            )
            self.output_data_objects[SilverCellIntersectionGroupsDataObject.ID] = (
                SilverCellIntersectionGroupsDataObject(
                    self.spark,
                    self.silver_cell_intersection_groups_path,
                )
            )

    def execute(self):
        self.logger.info(f"Starting {self.COMPONENT_ID}...")
        self.read()

        # for every date in the data period, get the events and the intersection groups
        # for that date and calculate the time segments
        for current_date in self.data_period_dates:

            self.logger.info(f"Processing cell plan for {current_date.strftime('%Y-%m-%d')}")

            self.current_date = current_date

            self.current_cells_sdf = (
                self.input_data_objects[SilverNetworkDataObject.ID]
                .df.filter(
                    (
                        F.make_date(F.col(ColNames.year), F.col(ColNames.month), F.col(ColNames.day))
                        == F.lit(current_date)
                    )
                )
                .select(
                    ColNames.cell_id,
                    ColNames.cell_type,
                    ColNames.antenna_height,
                    ColNames.power,
                    ColNames.horizontal_beam_width,
                    ColNames.vertical_beam_width,
                    ColNames.altitude,
                    ColNames.latitude,
                    ColNames.longitude,
                    ColNames.directionality,
                    ColNames.azimuth_angle,
                    ColNames.elevation_angle,
                )
            )

            self.transform()
            self.write()
            self.spark.catalog.clearCache()
        self.logger.info(f"Finished {self.COMPONENT_ID}")

    def transform(self):
        self.logger.info(f"Transform method {self.COMPONENT_ID}")

        if self.use_elevation:
            grid_sdf = self.input_data_objects[SilverEnrichedGridDataObject.ID].df.select(
                ColNames.grid_id, ColNames.geometry, ColNames.elevation
            )
        else:
            grid_sdf = self.input_data_objects[SilverGridDataObject.ID].df.select(ColNames.grid_id, ColNames.geometry)

        grid_sdf = self.add_z_to_point_geometry(grid_sdf, ColNames.geometry, self.use_elevation)
        grid_sdf = grid_sdf.withColumnRenamed(ColNames.geometry, ColNames.joined_geometry)

        current_cells_sdf = self.current_cells_sdf

        current_cells_sdf = self.impute_default_cell_properties(current_cells_sdf)

        current_cells_sdf = self.watt_to_dbm(current_cells_sdf)

        # TODO: Add Path Loss Exponent calculation based on grid landuse data

        # Create geometries
        current_cells_sdf = self.create_cell_point_geometry(current_cells_sdf, self.use_elevation)
        current_cells_sdf = utils.project_to_crs(current_cells_sdf, 4326, self.cartesian_crs)

        if self.do_azimuth_angle_adjustments:
            # get standard deviation mapping table for azimuth beam width azimuth back loss pairs
            self.sd_azimuth_mapping_sdf = self.get_angular_adjustments_sd_mapping(
                current_cells_sdf,
                ColNames.horizontal_beam_width,
                ColNames.azimuth_signal_strength_back_loss,
                "azimuth",
            )

        self.sd_azimuth_mapping_sdf = F.broadcast(self.sd_azimuth_mapping_sdf)

        if self.do_elevation_angle_adjustments:
            # get standard deviation mapping table for elevation beam width elevation back loss pairs
            self.sd_elevation_mapping_sdf = self.get_angular_adjustments_sd_mapping(
                current_cells_sdf,
                ColNames.vertical_beam_width,
                ColNames.elevation_signal_strength_back_loss,
                "elevation",
            )

        self.sd_elevation_mapping_sdf = F.broadcast(self.sd_elevation_mapping_sdf)

        if self.do_dynamic_coverage_range_calculation:
            current_cells_sdf = self.calculate_effective_coverage(current_cells_sdf, grid_sdf)
            current_cells_sdf = current_cells_sdf.dropna(subset=["coverage_center"])
            current_cells_sdf = current_cells_sdf.filter(F.col("coverage_effective_range") > 100)
            current_cells_sdf = current_cells_sdf.repartition(self.repartition_number)
            current_cells_sdf.cache()
            current_cells_sdf.count()
            current_cell_grid_sdf = self.spatial_join_within_distance(
                current_cells_sdf, grid_sdf, "coverage_center", "coverage_effective_range"
            )
        else:
            current_cell_grid_sdf = self.spatial_join_within_distance(current_cells_sdf, grid_sdf, "geometry", "range")
        # Calculate planar and 3D distances
        current_cell_grid_sdf = self.calculate_cartesian_distances(current_cell_grid_sdf)

        current_cell_grid_sdf = self.calculate_signal_dominance(
            current_cell_grid_sdf, self.do_azimuth_angle_adjustments, self.do_elevation_angle_adjustments
        )

        current_cell_grid_sdf = current_cell_grid_sdf.drop(
            ColNames.distance_to_cell_3D,
            ColNames.distance_to_cell,
            ColNames.azimuth_angle,
            ColNames.elevation_angle,
            ColNames.horizontal_beam_width,
            ColNames.vertical_beam_width,
            ColNames.azimuth_signal_strength_back_loss,
            ColNames.elevation_signal_strength_back_loss,
        )

        # Prune small signal dominance values
        if self.do_sd_treshold_prunning:
            current_cell_grid_sdf = self.prune_small_signal_dominance(
                current_cell_grid_sdf, self.signal_dominance_treshold
            )

        # Prune signal dominance difference from best
        if self.do_difference_from_best_sd_prunning:
            current_cell_grid_sdf = self.prune_signal_difference_from_best(
                current_cell_grid_sdf, self.difference_from_best_sd_treshold
            )

        # Prune max cells per grid tile
        if self.do_max_cells_per_tile_prunning:
            current_cell_grid_sdf = self.prune_max_cells_per_grid_tile(
                current_cell_grid_sdf, self.max_cells_per_grid_tile
            )

        # get year, month, day from current date

        current_cell_grid_sdf = current_cell_grid_sdf.withColumns(
            {
                ColNames.year: F.lit(self.current_date.year),
                ColNames.month: F.lit(self.current_date.month),
                ColNames.day: F.lit(self.current_date.day),
            }
        )

        current_cell_grid_sdf = utils.apply_schema_casting(current_cell_grid_sdf, SilverCellFootprintDataObject.SCHEMA)

        self.output_data_objects[SilverCellFootprintDataObject.ID].df = current_cell_grid_sdf

        if self.do_do_cell_intersection_groups_calculation:

            cell_intersection_groups_sdf = self.calculate_intersection_groups(current_cell_grid_sdf)
            cell_intersection_groups_sdf = cell_intersection_groups_sdf.persist(StorageLevel.MEMORY_AND_DISK)
            cell_intersection_groups_sdf.count()

            cell_intersection_groups_sdf = self.calculate_all_intersection_combinations(cell_intersection_groups_sdf)

            cell_intersection_groups_sdf = utils.apply_schema_casting(
                cell_intersection_groups_sdf, SilverCellIntersectionGroupsDataObject.SCHEMA
            )
            self.output_data_objects[SilverCellIntersectionGroupsDataObject.ID].df = cell_intersection_groups_sdf

    def impute_default_cell_properties(self, sdf: DataFrame) -> DataFrame:
        """
        Imputes default cell properties for null values in the input DataFrame using
        default properties for cell types from config.

        Args:
            sdf (DataFrame): Input DataFrame.

        Returns:
            DataFrame: DataFrame with imputed default cell properties.
        """
        default_properties_df = self.create_default_properties_df()

        # add default prefix to the columns of default_properties_df
        default_properties_df = default_properties_df.select(
            [F.col(col).alias(f"default_{col}") for col in default_properties_df.columns]
        )

        # assign default cell type to cell types not present in config
        sdf = sdf.withColumn(
            ColNames.cell_type,
            F.when(
                F.col(ColNames.cell_type).isin(list(self.default_cell_properties.keys())),
                F.col(ColNames.cell_type),
            ).otherwise("default"),
        )

        # all cell types which are absent from the default_properties_df will be assigned default values
        sdf = sdf.join(
            default_properties_df,
            sdf[ColNames.cell_type] == default_properties_df[f"default_{ColNames.cell_type}"],
            how="inner",
        )
        # if orignal column is null, assign the default value
        for col in default_properties_df.columns:
            col = col.replace("default_", "")
            if col not in sdf.columns:
                sdf = sdf.withColumn(col, F.lit(None))
            sdf = sdf.withColumn(col, F.coalesce(F.col(col), F.col(f"default_{col}")))

        return sdf.drop(*default_properties_df.columns)

    def create_default_properties_df(self) -> DataFrame:
        """
        Creates a DataFrame with default cell properties from config dict.

        Returns:
            DataFrame: A DataFrame with default cell properties.
        """

        rows = [Row(cell_type=k, **v) for k, v in self.default_cell_properties.items()]
        return self.spark.createDataFrame(rows).withColumnRenamed("cell_type", ColNames.cell_type)

    # create geometry for cells. Set Z values if elevation is taken into account from z column, otherwise to 0
    @staticmethod
    def create_cell_point_geometry(sdf: DataFrame, use_elevation: bool) -> DataFrame:
        """
        Creates cell point geometry.
        If elevation is taken into account, set Z values from z column, otherwise to 0.

        Args:
            sdf (DataFrame): Input DataFrame.
            use_elevation (bool): Whether to use elevation.

        Returns:
            DataFrame: DataFrame with cell point geometry.
        """
        if use_elevation:
            sdf = sdf.withColumn(
                ColNames.geometry,
                STC.ST_MakePoint(
                    F.col(ColNames.longitude),
                    F.col(ColNames.latitude),
                    F.col(ColNames.altitude) + F.col(ColNames.antenna_height),
                ),
            )
        else:
            sdf = sdf.withColumn(
                ColNames.geometry,
                STC.ST_MakePoint(
                    F.col(ColNames.longitude),
                    F.col(ColNames.latitude),
                    F.col(ColNames.antenna_height),
                ),
            )
        # assign crs
        sdf = sdf.withColumn(ColNames.geometry, STF.ST_SetSRID(F.col(ColNames.geometry), F.lit(4326)))

        return sdf.drop(ColNames.latitude, ColNames.longitude, ColNames.altitude, ColNames.antenna_height)

    # add z value to the grid geometry if elevation is taken into account from z column in the grid otherwise set to 0
    @staticmethod
    def add_z_to_point_geometry(sdf: DataFrame, geometry_col: str, use_elevation: bool) -> DataFrame:
        """
        Adds z value to the point geometry (grid centroids).
        If elevation is taken into account, set Z values from z column, otherwise to 0.

        Args:
            sdf (DataFrame): Input DataFrame.
            use_elevation (bool): Whether to use elevation.

        Returns:
            DataFrame: DataFrame with z value added to point geometry.
        """
        if use_elevation:
            sdf = sdf.withColumn(
                geometry_col,
                STC.ST_MakePoint(
                    STF.ST_X(F.col(geometry_col)),
                    STF.ST_Y(F.col(geometry_col)),
                    F.col(ColNames.elevation),
                ),
            )
        else:
            sdf = sdf.withColumn(
                geometry_col,
                STC.ST_MakePoint(
                    STF.ST_X(F.col(geometry_col)),
                    STF.ST_Y(F.col(geometry_col)),
                    F.lit(0.0),
                ),
            )

        return sdf.drop(ColNames.elevation)

    @staticmethod
    def spatial_join_within_distance(
        sdf_from: DataFrame, sdf_to: DataFrame, geometry_col: str, within_distance_col: str
    ) -> DataFrame:
        """
        Performs a spatial join within a specified distance.

        Args:
            sdf_from (DataFrame): Input DataFrame.
            sdf_to (DataFrame): DataFrame to join with.
            within_distance_col (str): Column name for the within distance.

        Returns:
            DataFrame: DataFrame after performing the spatial join.
        """

        sdf_merged = (
            sdf_from.alias("a")
            .join(
                sdf_to.alias("b"),
                STP.ST_Intersects(
                    STF.ST_Buffer(f"a.{geometry_col}", f"a.{within_distance_col}"),
                    f"b.{ColNames.joined_geometry}",
                ),
            )
            .drop(f"a.{within_distance_col}")
        )

        return sdf_merged

    @staticmethod
    def calculate_cartesian_distances(sdf: DataFrame) -> DataFrame:
        """
        Calculates cartesian distances.

        Args:
            sdf (DataFrame): Input DataFrame.

        Returns:
            DataFrame: DataFrame with calculated cartesian distances.
        """

        sdf = sdf.withColumns(
            {
                ColNames.distance_to_cell_3D: STF.ST_3DDistance(
                    F.col(ColNames.geometry), F.col(ColNames.joined_geometry)
                ),
                ColNames.distance_to_cell: STF.ST_Distance(F.col(ColNames.geometry), F.col(ColNames.joined_geometry)),
            }
        )

        return sdf

    @staticmethod
    def watt_to_dbm(sdf: DataFrame) -> DataFrame:
        """
        Converts power from watt to dBm.

        Args:
            sdf (DataFrame): Input DataFrame.

        Returns:
            DataFrame: DataFrame with power converted to dBm.
        """
        return sdf.withColumn(ColNames.power, 10.0 * F.log10(F.col(ColNames.power)) + 30.0)

    @staticmethod
    def join_sd_mapping(
        sdf: DataFrame,
        sd_mapping_sdf: DataFrame,
        beam_width_col: str,
        signal_front_back_difference_col: str,
        sd_col: str,
    ) -> DataFrame:
        """
        Joins DataFrame with standard deviation mapping.

        Args:
            sdf (DataFrame): Input DataFrame.
            sd_mapping_sdf (DataFrame): DataFrame with standard deviation mapping.
            beam_width_col (str): Column name for the beam width.
            signal_front_back_difference_col (str): Column name for the signal front-back difference.

        Returns:
            DataFrame: DataFrame after joining with standard deviation mapping.
        """

        join_condition = (F.col(f"a.{beam_width_col}") == F.col(f"b.{beam_width_col}")) & (
            F.col(f"a.{signal_front_back_difference_col}") == F.col(f"b.{signal_front_back_difference_col}")
        )

        sdf = sdf.alias("a").join(sd_mapping_sdf.alias("b"), join_condition).select(f"a.*", f"b.{sd_col}")

        return sdf

    def get_angular_adjustments_sd_mapping(
        self,
        cells_sdf: DataFrame,
        beam_width_col: str,
        signal_front_back_difference_col: str,
        angular_adjustment_type: str,
    ) -> DataFrame:
        """
        Calculates standard deviations in signal strength based on beam width and front-back cell signal difference.

        Args:
            cells_sdf (DataFrame): Input DataFrame.
            beam_width_col (str): Column name for the beam width.
            signal_front_back_difference_col (str): Column name for the signal front-back difference.
            angular_adjustment_type (str): Type of angular adjustment.

        Returns:
            DataFrame: DataFrame with angular adjustments standard deviation mapping.
        """

        sd_mappings = CellFootprintEstimation.get_sd_to_signal_back_loss_mappings(
            cells_sdf, signal_front_back_difference_col
        )
        beam_widths_diff = (
            cells_sdf.select(F.col(beam_width_col), F.col(signal_front_back_difference_col))
            .where(F.col(ColNames.directionality) == 1)
            .distinct()
        )
        beam_widths_diff = [row.asDict() for row in beam_widths_diff.collect()]

        beam_sds = []
        for item in beam_widths_diff:
            item[f"sd_{angular_adjustment_type}"] = self.find_sd(
                item[beam_width_col],
                sd_mappings[sd_mappings[signal_front_back_difference_col] == item[signal_front_back_difference_col]],
            )
            beam_sds.append(item)

        beam_sd_sdf = self.spark.createDataFrame(beam_sds)

        return beam_sd_sdf

    @staticmethod
    def find_sd(beam_width: float, mapping: DataFrame) -> float:
        """
        Finds the standard deviation corresponding to the given beam width using the provided mapping.

        Args:
            beam_width (float): The width of the beam in degrees.
            mapping (DataFrame): A DataFrame where each row corresponds to a standard deviation
                and contains the corresponding angle.

        Returns:
            float: The standard deviation corresponding to the given beam width.
        """
        min_diff_index = (abs(mapping["deg"] - beam_width / 2)).idxmin()
        return float(mapping.loc[min_diff_index, "sd"])

    @staticmethod
    def get_sd_to_signal_back_loss_mappings(cells_sdf: DataFrame, signal_front_back_difference_col: str) -> DataFrame:
        """
        Generates a DataFrame with mapping of signal strength standard deviation for each
            elevation/azimuth angle degree.

        Parameters:
        cells_sdf (DataFrame): A Spark DataFrame containing information about the cells.
        signal_front_back_difference_col (str): The name of the column that contains the difference
            in signal strength between
        the front and back of the cell.

        Returns:
        DataFrame: A pandas DataFrame with standard deviation mappings.

        """
        db_back_diffs = (
            cells_sdf.select(F.col(signal_front_back_difference_col))
            .where(F.col(ColNames.directionality) == 1)
            .distinct()
        )
        db_back_diffs = [row.asDict()[signal_front_back_difference_col] for row in db_back_diffs.collect()]
        mappings = [
            CellFootprintEstimation.create_mapping(item, signal_front_back_difference_col) for item in db_back_diffs
        ]

        return pd.concat(mappings)

    @staticmethod
    def create_mapping(db_back: float, signal_front_back_difference_col) -> DataFrame:
        """
        Creates a mapping between standard deviation and the angle
        at which the signal strength falls to 3 dB below its maximum value.

        Args:
            db_back (float): The difference in signal strength in dB between the front and back of the signal.

        Returns:
            DataFrame: A DataFrame where each row corresponds to a
            standard deviation and contains the corresponding angle.
        """
        idf = pd.DataFrame({"sd": np.arange(180 / 1000, 180, 180 / 1000)})
        idf["deg"] = idf["sd"].apply(CellFootprintEstimation.get_min3db, db_back=db_back)
        df = pd.DataFrame({"deg": np.arange(1, 181)})
        df["sd"] = df["deg"].apply(lambda dg: idf.loc[np.abs(idf["deg"] - dg).idxmin(), "sd"])
        df[signal_front_back_difference_col] = db_back
        return df

    @staticmethod
    def get_min3db(sd: float, db_back: float) -> float:
        """
        Finds the angle at which the signal strength falls to 3 dB below its maximum value.

        Args:
            sd (float): The standard deviation of the normal distribution modeling the signal strength.
            db_back (float): The difference in signal strength in dB between the front and back of the signal.

        Returns:
            float: The angle at which the signal strength falls to 3 dB below its maximum value.
        """
        df = pd.DataFrame({"a": np.linspace(0, 180, 720)})
        df["dbLoss"] = CellFootprintEstimation.norm_dBloss(df["a"], db_back=db_back, sd=sd)
        return df.loc[np.abs(-3 - df["dbLoss"]).idxmin(), "a"]

    @staticmethod
    def norm_dBloss(a: float, sd: float, db_back: float) -> float:
        """
        Computes the loss in signal strength in dB as a function of
        angle from the direction of maximum signal strength.

        Args:
            a (float): The angle from the direction of maximum signal strength.
            sd (float): The standard deviation of the normal distribution modeling the signal strength.
            db_back (float): The difference in signal strength in dB between the front and back of the signal.

        Returns:
            float: The loss in signal strength in dB at the given angle.
        """
        a = ((a + 180) % 360) - 180
        inflate = -db_back / (
            CellFootprintEstimation.normal_distribution(0, 0, sd)
            - CellFootprintEstimation.normal_distribution(180, 0, sd)
        )
        return (
            CellFootprintEstimation.normal_distribution(a, 0, sd)
            - CellFootprintEstimation.normal_distribution(0, 0, sd)
        ) * inflate

    @staticmethod
    def normal_distribution(x: float, mean: float, sd: float) -> Union[np.array, list]:
        """
        Computes the value of the normal distribution with the given mean
        and standard deviation at the given point.

        Args:
            x (float): The point at which to evaluate the normal distribution.
            mean (float): The mean of the normal distribution.
            sd (float): The standard deviation of the normal distribution.
            return_type (str): The desired return type, either 'np_array' or 'list'.

        Returns:
            np.array or list: The value of the normal distribution at the given point,
            returned as either a numpy array or a list.
        """
        n_dist = (1.0 / (sqrt(2.0 * pi) * sd)) * np.exp(-0.5 * ((x - mean) / sd) ** 2)

        return n_dist

    def calculate_effective_coverage(self, cells_sdf: DataFrame, grid_sdf: DataFrame) -> DataFrame:
        """
        Calculates effective cell coverage center and range based on desired signal domincance threshold.

        The function first separates the cells into omnidirectional and directional types,
        then calculates the signal dominance threshold points for each type.
        The function then calculates the effective coverage center and range for each cell
        based on the signal dominance threshold points.

        Parameters:
        cells_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing cell information, including directionality.
        grid_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing grid used for calculating signal dominance.

        Returns:
        pyspark.sql.DataFrame: A Spark DataFrame with the effective coverage information for each cell, including the
                            coverage center and effective range. The DataFrame excludes intermediate columns used
                            during the calculation.
        """
        # omnidirectional cells
        cells_omni_sdf = cells_sdf.filter(F.col(ColNames.directionality) == 0)

        if cells_omni_sdf.rdd.isEmpty():
            cells_omni_sdf = self.spark.createDataFrame([], cells_sdf.schema)
        else:
            cells_omni_sdf = self.get_signal_dominance_threshold_point(cells_omni_sdf, grid_sdf, "omni")

            cells_omni_sdf = cells_omni_sdf.withColumn("coverage_center", F.col("geometry")).withColumn(
                "coverage_effective_range", STF.ST_Distance(F.col("coverage_center"), F.col("omni"))
            )
        cells_omni_sdf.cache()
        cells_omni_sdf.count()

        # directional cells
        cells_directional_sdf = cells_sdf.filter(F.col(ColNames.directionality) == 1)

        if cells_directional_sdf.rdd.isEmpty():
            cells_directional_sdf = self.spark.createDataFrame([], cells_sdf.schema)
        else:
            cells_directional_sdf = self.get_signal_dominance_threshold_point(
                cells_directional_sdf, grid_sdf, "directional_front"
            )

            cells_directional_sdf.cache()
            cells_directional_sdf.count()

            cells_directional_sdf = self.get_signal_dominance_threshold_point(
                cells_directional_sdf, grid_sdf, "directional_back"
            )

            cells_directional_sdf = cells_directional_sdf.withColumn(
                "coverage_center",
                STF.ST_LineInterpolatePoint(
                    STF.ST_MakeLine(
                        cells_directional_sdf["directional_front"], cells_directional_sdf["directional_back"]
                    ),
                    0.5,
                ),
            )
            cells_directional_sdf = cells_directional_sdf.withColumn(
                "coverage_effective_range",
                STF.ST_Distance(cells_directional_sdf["coverage_center"], cells_directional_sdf["directional_front"]),
            )

        cells_sdf = cells_omni_sdf.unionByName(cells_directional_sdf, allowMissingColumns=True)

        return cells_sdf.drop("omni", "directional_front", "directional_back")

    def get_signal_dominance_threshold_point(self, cells_sdf, grid_sdf, point_type):
        """
        Calculates the signal dominance threshold points in cell maximum range.

        For omnidirectional cell types, the signal dominance threshold point is calculated as
        the furthest point along 90 degrees azimuth direction where signal dominance is less than the threshold.
        For directional cells types, two signal dominance threshold points are calculated:
            1. the furthest point along the directionality angle direction where signal dominance is less than the threshold
            2. the furthest point opposite to the directionality angle direction where signal dominance is less than the threshold

        Args:
            cells_sdf (DataFrame): The DataFrame containing cell information.
            grid_sdf (DataFrame): The DataFrame containing grid information.
            point_type (str): The type of point to calculate the signal dominance threshold for.

        Returns:
            DataFrame: The updated cells DataFrame with the signal dominance threshold point added.
        """

        do_azimuth_angle_adjustments = True
        do_elevation_angle_adjustments = True

        if point_type == "directional_front":
            # Calculate range line for directional front point type
            cells_sdf = cells_sdf.withColumn(
                "range_line",
                STF.ST_MakeLine(
                    "geometry",
                    STC.ST_Point(
                        STF.ST_X("geometry") + cells_sdf["range"] * F.sin(F.radians(cells_sdf["azimuth_angle"])),
                        STF.ST_Y("geometry") + cells_sdf["range"] * F.cos(F.radians(cells_sdf["azimuth_angle"])),
                    ),
                ),
            )

        elif point_type == "directional_back":
            # Calculate range line for directional back point type
            cells_sdf = cells_sdf.withColumn(
                "range_line",
                STF.ST_MakeLine(
                    "geometry",
                    STC.ST_Point(
                        STF.ST_X("geometry") + cells_sdf["range"] * F.sin(F.radians(cells_sdf["azimuth_angle"] + 180)),
                        STF.ST_Y("geometry") + cells_sdf["range"] * F.cos(F.radians(cells_sdf["azimuth_angle"] + 180)),
                    ),
                ),
            )

        elif point_type == "omni":
            # Calculate range line for omni point type
            cells_sdf = cells_sdf.withColumn(
                "range_line",
                STF.ST_MakeLine(
                    "geometry",
                    STC.ST_Point(
                        STF.ST_X("geometry") + cells_sdf["range"] * F.sin(F.radians(F.lit(90))),
                        STF.ST_Y("geometry") + cells_sdf["range"] * F.cos(F.radians(F.lit(90))),
                    ),
                ),
            )

            do_azimuth_angle_adjustments = False
            do_elevation_angle_adjustments = False

        cells_sdf = cells_sdf.withColumn("coverage_range_line_buffer", F.lit(self.coverage_range_line_buffer))

        cell_grid = self.spatial_join_within_distance(cells_sdf, grid_sdf, "range_line", "coverage_range_line_buffer")

        # calculate 3d distance and planar distance from cell id to grid ids
        cell_grid = self.calculate_cartesian_distances(cell_grid)

        cell_grid = self.calculate_signal_dominance(
            cell_grid, do_elevation_angle_adjustments, do_azimuth_angle_adjustments
        )

        cell_grid_filtered = cell_grid.filter(F.col(ColNames.signal_dominance) > self.signal_dominance_treshold)
        cell_counts = cell_grid_filtered.groupBy("cell_id").count().withColumnRenamed("count", "filtered_count")
        cell_grid_joined = cell_grid.join(cell_counts, on="cell_id", how="left").fillna(0, subset=["filtered_count"])

        # In case if desired threshold filter removes all grid tiles in given direction, keep closest grid tile
        # Otherwise keep furthest point where threshold condition meet
        window_min = Window.partitionBy("cell_id").orderBy(F.col("distance_to_cell"))
        window_max = Window.partitionBy("cell_id").orderBy(F.desc(F.col("distance_to_cell")))

        cell_grid_max = (
            cell_grid_joined.withColumn(
                "rank",
                F.when(F.col("filtered_count") == 0, F.row_number().over(window_min)).otherwise(
                    F.row_number().over(window_max)
                ),
            )
            .filter(F.col("rank") == 1)
            .drop("rank", "filtered_count")
        )

        cells_sdf = cells_sdf.join(
            cell_grid_max.select("cell_id", "joined_geometry").withColumnRenamed("joined_geometry", point_type),
            "cell_id",
            "left",
        )

        return cells_sdf.drop(
            "range_line", "distance_to_cell_3d", "distance_to_cell", "signal_strength", "signal_dominance", "grid_id"
        )

    @staticmethod
    def calculate_distance_power_loss(sdf: DataFrame) -> DataFrame:
        """
        Calculates distance power loss caluclated as
        power - path_loss_exponent * 10 * log10(distance_to_cell_3D).

        Args:
            sdf (DataFrame): Input DataFrame.

        Returns:
            DataFrame: DataFrame with calculated distance power loss.
        """
        sdf = sdf.withColumn(
            ColNames.signal_strength,
            F.col(ColNames.power)
            - F.col(ColNames.path_loss_exponent) * 10 * F.log10(F.col(ColNames.distance_to_cell_3D)),
        )

        return sdf.drop(ColNames.power, ColNames.path_loss_exponent)

    def calculate_signal_dominance(self, cell_grid_gdf, do_elevation_angle_adjustments, do_azimuth_angle_adjustments):
        """
        Calculates the signal dominance for each cell in a grid DataFrame, optionally adjusting for elevation and azimuth angles.

        This function performs a series of adjustments on the signal strength of each cell in the provided grid DataFrame to calculate the signal dominance. The adjustments include distance power loss, horizontal angle power adjustment (azimuth), and vertical angle power adjustment (elevation), based on the provided flags. Finally, it converts the adjusted signal strength into signal dominance using a logistic function.

        Parameters:
            cell_grid_gdf (GeoDataFrame): A GeoDataFrame containing the cell grid data.
            do_elevation_angle_adjustments (bool): Flag to indicate whether to perform elevation angle adjustments.
            do_azimuth_angle_adjustments (bool): Flag to indicate whether to perform azimuth angle adjustments.

        Returns:
            GeoDataFrame: The input GeoDataFrame with an additional column for signal dominance, after applying the specified adjustments.
        """

        # calculate distance power loss
        cell_grid_gdf = self.calculate_distance_power_loss(cell_grid_gdf)

        # calculate horizontal angle power adjustment
        if do_azimuth_angle_adjustments:

            cell_grid_gdf_directional = cell_grid_gdf.filter(F.col(ColNames.directionality) == 1)

            cell_grid_gdf_directional = self.join_sd_mapping(
                cell_grid_gdf_directional,
                self.sd_azimuth_mapping_sdf,
                ColNames.horizontal_beam_width,
                ColNames.azimuth_signal_strength_back_loss,
                "sd_azimuth",
            )
            cell_grid_gdf_directional = self.calculate_horizontal_angle_power_adjustment(cell_grid_gdf_directional)

            cell_grid_gdf = cell_grid_gdf_directional.unionByName(
                cell_grid_gdf.where(F.col(ColNames.directionality) == 0),
                allowMissingColumns=True,
            )

        # calculate vertical angle power adjustment
        if do_elevation_angle_adjustments:

            cell_grid_gdf_directional = cell_grid_gdf.filter(F.col(ColNames.directionality) == 1)

            cell_grid_gdf_directional = self.join_sd_mapping(
                cell_grid_gdf_directional,
                self.sd_elevation_mapping_sdf,
                ColNames.vertical_beam_width,
                ColNames.elevation_signal_strength_back_loss,
                "sd_elevation",
            )

            cell_grid_gdf_directional = self.calculate_vertical_angle_power_adjustment(cell_grid_gdf_directional)
            cell_grid_gdf = cell_grid_gdf_directional.unionByName(
                cell_grid_gdf.where(F.col(ColNames.directionality) == 0),
                allowMissingColumns=True,
            )

        # calculate signal dominance
        cell_grid_gdf = self.signal_strength_to_signal_dominance(
            cell_grid_gdf, self.logistic_function_steepness, self.logistic_function_midpoint
        )

        return cell_grid_gdf

    @staticmethod
    def calculate_horizontal_angle_power_adjustment(sdf: DataFrame) -> DataFrame:
        """
        Adjusts the signal strength of each cell in the input DataFrame based on the horizontal angle.

        This function calculates the azimuth angle between each cell and a reference point,
        projects the data to the elevation plane, and adjusts the signal strength based on the
        relative azimuth angle and the distance to the cell. The adjustment is calculated using
        a normal distribution model of signal strength.

        Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R

        Args:
            sdf (DataFrame): A Spark DataFrame

        Returns:
            DataFrame: The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped.
        """

        # TODO: simplify math in this function by using Sedona built in spatial methods
        sdf = sdf.withColumn(
            "theta_azim",
            (
                90
                - F.degrees(
                    (
                        F.atan2(
                            STF.ST_Y(F.col(ColNames.joined_geometry)) - STF.ST_Y(F.col(ColNames.geometry)),
                            STF.ST_X(F.col(ColNames.joined_geometry)) - STF.ST_X(F.col(ColNames.geometry)),
                        )
                    )
                )
            ),
        )
        sdf = sdf.withColumn(
            "theta_azim",
            F.when(F.col("theta_azim") < 0, F.col("theta_azim") + 360).otherwise(F.col("theta_azim")),
        )
        sdf = sdf.withColumn("azim", (F.col("theta_azim") - F.col(ColNames.azimuth_angle)) % 360)
        sdf = sdf.withColumn(
            "azim",
            F.when(F.col("azim") > 180, F.col("azim") - 360).otherwise(
                F.when(F.col("azim") < -180, F.col("azim") + 360).otherwise(F.col("azim"))
            ),
        )
        sdf = sdf.withColumn("a", F.sin(F.radians(F.col("azim"))) * F.col(ColNames.distance_to_cell))

        # project to elevation plane
        sdf = sdf.withColumn("b", F.cos(F.radians(F.col("azim"))) * F.col(ColNames.distance_to_cell))
        sdf = sdf.withColumn("c", STF.ST_Z(ColNames.geometry) - STF.ST_Z(ColNames.joined_geometry))

        sdf = sdf.withColumn("d", F.sqrt(F.col("b") ** 2 + F.col("c") ** 2))
        sdf = sdf.withColumn("lambda", F.degrees(F.atan2(F.col("c"), F.abs(F.col("b")))))
        sdf = sdf.withColumn(
            "cases",
            F.when(
                F.col("b") > 0,
                F.when(F.col(ColNames.elevation_angle) < F.col("lambda"), F.lit(1)).otherwise(F.lit(2)),
            ).otherwise(F.when(F.col("lambda") + F.col(ColNames.elevation_angle) < 90, F.lit(3)).otherwise(F.lit(4))),
        )

        sdf = sdf.withColumn(
            "e",
            F.when(
                F.col("cases") == 1,
                F.cos(F.radians(F.col("lambda") - F.col(ColNames.elevation_angle))) * F.col("d"),
            )
            .when(
                F.col("cases") == 2,
                F.cos(F.radians(F.col(ColNames.elevation_angle) - F.col("lambda"))) * F.col("d"),
            )
            .when(
                F.col("cases") == 3,
                -F.cos(F.radians(F.col("lambda") + F.col(ColNames.elevation_angle))) * F.col("d"),
            )
            .otherwise(F.cos(F.radians(180 - F.col("lambda") - F.col(ColNames.elevation_angle))) * F.col("d")),
        )

        sdf = sdf.withColumn("azim2", F.degrees(F.atan2(F.col("a"), F.col("e"))))

        # finally get power adjustments
        sdf = CellFootprintEstimation.norm_dBloss_spark(
            sdf, "azim2", "sd_azimuth", ColNames.azimuth_signal_strength_back_loss
        )

        sdf = sdf.withColumn("signal_strength", F.col("signal_strength") + F.col("normalized_dBloss"))

        # cleanup
        sdf = sdf.drop(
            "theta_azim",
            "azim",
            "a",
            "b",
            "c",
            "d",
            "_lambda",
            "cases",
            "e",
            "azim2",
            "sd_azimuth",
            "normalized_dBloss",
        )

        return sdf

    @staticmethod
    def calculate_vertical_angle_power_adjustment(sdf: DataFrame) -> DataFrame:
        """
        Adjusts the signal strength of each cell in the input DataFrame based on the vertical angle.

        This function calculates the elevation angle between each cell and a reference point,
        and adjusts the signal strength based on the relative elevation angle and the distance to the cell.
        The adjustment is calculated using a normal distribution model of signal strength.

        Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R

        Args:
            sdf (DataFrame): A Spark DataFrame

        Returns:
            DataFrame: The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped.
        """

        sdf = sdf.withColumn(
            "gamma_elev",
            F.degrees(
                F.atan2(
                    STF.ST_Z(ColNames.geometry) - STF.ST_Z(ColNames.joined_geometry),
                    F.col(ColNames.distance_to_cell),
                )
            ),
        )
        sdf = sdf.withColumn("elev", (F.col("gamma_elev") - F.col(ColNames.elevation_angle)) % 360)

        sdf = sdf.withColumn(
            "elev",
            F.when(F.col("elev") > 180, F.col("elev") - 360).otherwise(
                F.when(F.col("elev") < -180, F.col("elev") + 360).otherwise(F.col("elev"))
            ),
        )

        # finally get power adjustments
        sdf = CellFootprintEstimation.norm_dBloss_spark(
            sdf, "elev", "sd_elevation", ColNames.elevation_signal_strength_back_loss
        )

        sdf = sdf.withColumn(
            ColNames.signal_strength,
            F.col(
                ColNames.signal_strength,
            )
            + F.col("normalized_dBloss"),
        )

        # cleanup
        sdf = sdf.drop("gamma_elev", "elev", "sd_elevation", "normalized_dBloss")

        return sdf

    @staticmethod
    def normal_distribution_col(x_col: Column, mean_col: Column, sd_col: Column) -> Column:
        """
        Computes the value of the normal distribution for each row in a DataFrame based on
        the provided columns for the point, mean, and standard deviation.

        This function applies the normal distribution formula to each row of the DataFrame using
        the specified columns for the point (x), mean, and standard deviation (sd).
        The normal distribution formula used is:

            f(x) = (1 / (sqrt(2 * pi) * sd)) * exp(-0.5 * ((x - mean) / sd)^2)

        where `x` is the value at which the normal distribution is evaluated,
        `mean` is the mean of the distribution, and `sd` is the standard deviation.

        Parameters:
            x_col (Column): A Spark DataFrame column representing the point at which to evaluate the normal distribution.
            mean_col (Column): A Spark DataFrame column representing the mean of the normal distribution.
            sd_col (Column): A Spark DataFrame column representing the standard deviation of the normal distribution.

        Returns:
            Column: A Spark DataFrame column with the computed normal distribution values for each row.
        """
        return (1.0 / (F.sqrt(2.0 * F.lit(pi)) * sd_col)) * F.exp(-0.5 * ((x_col - mean_col) / sd_col) ** 2)

    @staticmethod
    def norm_dBloss_spark(sdf: DataFrame, angle_col: str, sd_col: str, db_back_col: str) -> DataFrame:
        """
        Normalizes the dB loss in a Spark DataFrame based on the angle, standard deviation, and dB back loss.

        This method performs several operations to normalize the dB loss for each row in the Spark DataFrame:
        1. Normalizes the angle to a range of [-180, 180) degrees.
        2. Calculates the normal distribution of the normalized angles with a mean of 0 and a standard deviation specified by `sd_col`.
        3. Calculates the normal distribution for angles 0 and 180 degrees using precomputed values, with a mean of 0 and the same standard deviation.
        4. Computes an inflation factor based on the dB back loss column and the difference between the normal distributions at 0 and 180 degrees.
        5. Calculates the normalized dB loss by adjusting the normal distribution of the angle with the inflation factor.

        Parameters:
            sdf (DataFrame): The input Spark DataFrame containing the data.
            angle_col (str): The name of the column that contains the angles to be normalized.
            sd_col (str): The name of the column that contains the standard deviation values for the normal distribution calculation.
            db_back_col (str): The name of the column in that contains the dB back loss values used to calculate the inflation factor.

        Returns:
            DataFrame: A Spark DataFrame with the normalized dB loss added and intermediate columns removed.
        """
        # Normalizing angles

        sdf = sdf.withColumn("angle_normalized", ((F.col(angle_col) + 180) % 360) - 180)

        # Calculate the normal distribution for the normalized angles
        sdf = sdf.withColumn(
            "norm_dist_angle",
            CellFootprintEstimation.normal_distribution_col(F.col("angle_normalized"), F.lit(0), F.col(sd_col)),
        )

        # Calculate the normal distribution for 0 and 180 degrees using precomputed values
        n_dist_0 = CellFootprintEstimation.normal_distribution_col(F.lit(0), F.lit(0), F.col(sd_col))
        n_dist_180 = CellFootprintEstimation.normal_distribution_col(F.lit(180), F.lit(0), F.col(sd_col))

        # Calculate the inflated factor
        sdf = sdf.withColumn("inflate", -F.col(db_back_col) / (n_dist_0 - n_dist_180))

        # Calculate the normalized dB loss
        sdf = sdf.withColumn("normalized_dBloss", (F.col("norm_dist_angle") - n_dist_0) * F.col("inflate"))

        return sdf.drop("angle_normalized", "norm_dist_angle", "inflate")

    @staticmethod
    def signal_strength_to_signal_dominance(
        sdf: DataFrame,
        logistic_function_steepness: float,
        logistic_function_midpoint: float,
    ) -> DataFrame:
        """
        Converts signal strength to signal dominance using a logistic function.
        Methodology from A Bayesian approach to location estimation of mobile devices
        from mobile network operator data. Tennekes and Gootzen (2022).

        The logistic function is defined as 1 / (1 + exp(-scale)),
        where scale is (signal_strength - logistic_function_midpoint) * logistic_function_steepness.

        Parameters:
        sdf (DataFrame): SignalStrenghtDataObject Spark DataFrame.
        logistic_function_steepness (float): The steepness parameter for the logistic function.
        logistic_function_midpoint (float): The midpoint parameter for the logistic function.

        Returns:
        DataFrame: A Spark DataFrame with the signal dominance added as a new column.
        """
        sdf = sdf.withColumn(
            "scale",
            (F.col(ColNames.signal_strength) - logistic_function_midpoint) * logistic_function_steepness,
        )
        sdf = sdf.withColumn(ColNames.signal_dominance, 1 / (1 + F.exp(-F.col("scale"))))
        sdf = sdf.drop("scale")

        return sdf

    @staticmethod
    def prune_small_signal_dominance(sdf: DataFrame, signal_dominance_threshold: float) -> DataFrame:
        """
        Prunes rows from the DataFrame where the signal dominance is less than or equal to the provided threshold.

        Parameters:
        sdf (DataFrame): A Spark DataFrame containing the signal dominance data.
        signal_dominance_threshold (float): The threshold for pruning small signal dominance values.

        Returns:
        DataFrame: A DataFrame with rows having signal dominance less than or equal to the threshold removed.
        """
        sdf = sdf.filter(F.col(ColNames.signal_dominance) > signal_dominance_threshold)
        return sdf

    @staticmethod
    def prune_max_cells_per_grid_tile(sdf: DataFrame, max_cells_per_grid_tile: int) -> DataFrame:
        """
        Prunes rows from the DataFrame exceeding the maximum number of cells allowed per grid tile.

        The rows are ordered by signal dominance in descending order,
        and only the top 'max_cells_per_grid_tile' rows are kept for each grid tile.

        Parameters:
        sdf (DataFrame): A Spark DataFrame containing the signal dominance data.
        max_cells_per_grid_tile (int): The maximum number of cells allowed per grid tile.

        Returns:
        DataFrame: A DataFrame with rows exceeding the maximum number of cells per grid tile removed.
        """
        window = Window.partitionBy(ColNames.grid_id).orderBy(F.desc(ColNames.signal_dominance))

        sdf = sdf.withColumn("row_number", F.row_number().over(window))
        sdf = sdf.filter(F.col("row_number") <= max_cells_per_grid_tile)
        sdf = sdf.drop("row_number")

        return sdf

    @staticmethod
    def prune_signal_difference_from_best(sdf: DataFrame, difference_threshold: float) -> DataFrame:
        """
        Prunes rows from the DataFrame based on a threshold of signal dominance difference.

        The rows are ordered by signal dominance in descending order, and only the rows where the difference
        in signal dominance from the maximum is less than the threshold are kept for each grid tile.

        Parameters:
        sdf (DataFrame): A Spark DataFrame containing the signal dominance data.
        threshold (float): The threshold for signal dominance difference in percentage.

        Returns:
        DataFrame: A DataFrame with rows pruned based on the signal dominance difference threshold.
        """
        window = Window.partitionBy(ColNames.grid_id).orderBy(F.desc(ColNames.signal_dominance))

        sdf = sdf.withColumn("row_number", F.row_number().over(window))

        sdf = sdf.withColumn("max_signal_dominance", F.first(ColNames.signal_dominance).over(window))
        sdf = sdf.withColumn(
            "signal_dominance_diff_percentage",
            (sdf["max_signal_dominance"] - sdf[ColNames.signal_dominance]) / sdf["max_signal_dominance"] * 100,
        )

        sdf = sdf.filter(
            (F.col("row_number") == 1) | (F.col("signal_dominance_diff_percentage") <= difference_threshold)
        )

        sdf = sdf.drop("row_number", "max_signal_dominance", "signal_dominance_diff_percentage")

        return sdf

    @staticmethod
    def calculate_intersection_groups(sdf: DataFrame) -> DataFrame:
        """
        Calculates the cell intersection groups based on cell footprints overlaps
        over grid tiles.

        Parameters:
        sdf (DataFrame): A Spark DataFrame containing the signal dominance data.

        Returns:
        DataFrame: A DataFrame with the intersection groups.
        """
        intersections_sdf = (
            sdf.groupBy(
                F.col(ColNames.year),
                F.col(ColNames.month),
                F.col(ColNames.day),
                F.col(ColNames.grid_id),
            )
            .agg(F.array_sort(F.collect_set(ColNames.cell_id)).alias(ColNames.cells))
            .select(ColNames.cells, ColNames.year, ColNames.month, ColNames.day)
        )

        intersections_sdf = intersections_sdf.drop_duplicates(
            [ColNames.year, ColNames.month, ColNames.day, ColNames.cells]
        )
        intersections_sdf = intersections_sdf.withColumn(ColNames.group_size, F.size(F.col(ColNames.cells)))
        intersections_sdf = intersections_sdf.filter(F.col(ColNames.group_size) > 1)

        return intersections_sdf

    @staticmethod
    def calculate_all_intersection_combinations(sdf: DataFrame) -> DataFrame:
        """
        Calculates all possible combinations of intersection groups.
        It is necessary to extract all overlap combinations from every
        intersection group. If there is an intersection group ABC intersection
        groups AB, AC, BC also has to be present.

        Parameters:
        sdf (DataFrame): A Spark DataFrame containing the intersection groups data.

        Returns:
        DataFrame: A DataFrame with all possible combinations of intersection groups for each grid tile.
        """
        combinations_sdf = []
        max_level = sdf.agg(F.max(ColNames.group_size).alias("max")).collect()[0]["max"]

        for level in range(2, max_level + 1):
            combinations_udf = CellFootprintEstimation.generate_combinations(level)

            combinations_sdf_level = sdf.filter(F.col(ColNames.group_size) >= level).withColumn(
                ColNames.cells, F.explode(combinations_udf(F.col(ColNames.cells)))
            )

            combinations_sdf_level = combinations_sdf_level.withColumn(
                ColNames.cells, F.array_sort(F.col(ColNames.cells))
            )
            combinations_sdf_level = combinations_sdf_level.drop_duplicates(
                [ColNames.year, ColNames.month, ColNames.day, ColNames.cells]
            )

            combinations_sdf_level = combinations_sdf_level.withColumn(ColNames.group_size, F.lit(level))

            window = Window.partitionBy(ColNames.year, ColNames.month, ColNames.day, ColNames.group_size).orderBy(
                F.col(ColNames.group_size)
            )

            combinations_sdf_level = combinations_sdf_level.withColumn(
                ColNames.group_id,
                F.concat(F.col(ColNames.group_size), F.lit("_"), F.row_number().over(window)),
            )

            combinations_sdf.append(combinations_sdf_level)

        return reduce(DataFrame.unionAll, combinations_sdf)

    @staticmethod
    def generate_combinations(level):
        def combinations_udf(arr):
            return list(combinations(arr, level))

        return F.udf(combinations_udf, ArrayType(ArrayType(StringType())))

add_z_to_point_geometry(sdf, geometry_col, use_elevation) staticmethod

Adds z value to the point geometry (grid centroids). If elevation is taken into account, set Z values from z column, otherwise to 0.

Parameters:

Name Type Description Default
sdf DataFrame

Input DataFrame.

required
use_elevation bool

Whether to use elevation.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with z value added to point geometry.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
@staticmethod
def add_z_to_point_geometry(sdf: DataFrame, geometry_col: str, use_elevation: bool) -> DataFrame:
    """
    Adds z value to the point geometry (grid centroids).
    If elevation is taken into account, set Z values from z column, otherwise to 0.

    Args:
        sdf (DataFrame): Input DataFrame.
        use_elevation (bool): Whether to use elevation.

    Returns:
        DataFrame: DataFrame with z value added to point geometry.
    """
    if use_elevation:
        sdf = sdf.withColumn(
            geometry_col,
            STC.ST_MakePoint(
                STF.ST_X(F.col(geometry_col)),
                STF.ST_Y(F.col(geometry_col)),
                F.col(ColNames.elevation),
            ),
        )
    else:
        sdf = sdf.withColumn(
            geometry_col,
            STC.ST_MakePoint(
                STF.ST_X(F.col(geometry_col)),
                STF.ST_Y(F.col(geometry_col)),
                F.lit(0.0),
            ),
        )

    return sdf.drop(ColNames.elevation)

calculate_all_intersection_combinations(sdf) staticmethod

Calculates all possible combinations of intersection groups. It is necessary to extract all overlap combinations from every intersection group. If there is an intersection group ABC intersection groups AB, AC, BC also has to be present.

Parameters: sdf (DataFrame): A Spark DataFrame containing the intersection groups data.

Returns: DataFrame: A DataFrame with all possible combinations of intersection groups for each grid tile.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
@staticmethod
def calculate_all_intersection_combinations(sdf: DataFrame) -> DataFrame:
    """
    Calculates all possible combinations of intersection groups.
    It is necessary to extract all overlap combinations from every
    intersection group. If there is an intersection group ABC intersection
    groups AB, AC, BC also has to be present.

    Parameters:
    sdf (DataFrame): A Spark DataFrame containing the intersection groups data.

    Returns:
    DataFrame: A DataFrame with all possible combinations of intersection groups for each grid tile.
    """
    combinations_sdf = []
    max_level = sdf.agg(F.max(ColNames.group_size).alias("max")).collect()[0]["max"]

    for level in range(2, max_level + 1):
        combinations_udf = CellFootprintEstimation.generate_combinations(level)

        combinations_sdf_level = sdf.filter(F.col(ColNames.group_size) >= level).withColumn(
            ColNames.cells, F.explode(combinations_udf(F.col(ColNames.cells)))
        )

        combinations_sdf_level = combinations_sdf_level.withColumn(
            ColNames.cells, F.array_sort(F.col(ColNames.cells))
        )
        combinations_sdf_level = combinations_sdf_level.drop_duplicates(
            [ColNames.year, ColNames.month, ColNames.day, ColNames.cells]
        )

        combinations_sdf_level = combinations_sdf_level.withColumn(ColNames.group_size, F.lit(level))

        window = Window.partitionBy(ColNames.year, ColNames.month, ColNames.day, ColNames.group_size).orderBy(
            F.col(ColNames.group_size)
        )

        combinations_sdf_level = combinations_sdf_level.withColumn(
            ColNames.group_id,
            F.concat(F.col(ColNames.group_size), F.lit("_"), F.row_number().over(window)),
        )

        combinations_sdf.append(combinations_sdf_level)

    return reduce(DataFrame.unionAll, combinations_sdf)

calculate_cartesian_distances(sdf) staticmethod

Calculates cartesian distances.

Parameters:

Name Type Description Default
sdf DataFrame

Input DataFrame.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with calculated cartesian distances.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
@staticmethod
def calculate_cartesian_distances(sdf: DataFrame) -> DataFrame:
    """
    Calculates cartesian distances.

    Args:
        sdf (DataFrame): Input DataFrame.

    Returns:
        DataFrame: DataFrame with calculated cartesian distances.
    """

    sdf = sdf.withColumns(
        {
            ColNames.distance_to_cell_3D: STF.ST_3DDistance(
                F.col(ColNames.geometry), F.col(ColNames.joined_geometry)
            ),
            ColNames.distance_to_cell: STF.ST_Distance(F.col(ColNames.geometry), F.col(ColNames.joined_geometry)),
        }
    )

    return sdf

calculate_distance_power_loss(sdf) staticmethod

Calculates distance power loss caluclated as power - path_loss_exponent * 10 * log10(distance_to_cell_3D).

Parameters:

Name Type Description Default
sdf DataFrame

Input DataFrame.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with calculated distance power loss.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
@staticmethod
def calculate_distance_power_loss(sdf: DataFrame) -> DataFrame:
    """
    Calculates distance power loss caluclated as
    power - path_loss_exponent * 10 * log10(distance_to_cell_3D).

    Args:
        sdf (DataFrame): Input DataFrame.

    Returns:
        DataFrame: DataFrame with calculated distance power loss.
    """
    sdf = sdf.withColumn(
        ColNames.signal_strength,
        F.col(ColNames.power)
        - F.col(ColNames.path_loss_exponent) * 10 * F.log10(F.col(ColNames.distance_to_cell_3D)),
    )

    return sdf.drop(ColNames.power, ColNames.path_loss_exponent)

calculate_effective_coverage(cells_sdf, grid_sdf)

Calculates effective cell coverage center and range based on desired signal domincance threshold.

The function first separates the cells into omnidirectional and directional types, then calculates the signal dominance threshold points for each type. The function then calculates the effective coverage center and range for each cell based on the signal dominance threshold points.

Parameters: cells_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing cell information, including directionality. grid_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing grid used for calculating signal dominance.

pyspark.sql.DataFrame: A Spark DataFrame with the effective coverage information for each cell, including the coverage center and effective range. The DataFrame excludes intermediate columns used during the calculation.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
def calculate_effective_coverage(self, cells_sdf: DataFrame, grid_sdf: DataFrame) -> DataFrame:
    """
    Calculates effective cell coverage center and range based on desired signal domincance threshold.

    The function first separates the cells into omnidirectional and directional types,
    then calculates the signal dominance threshold points for each type.
    The function then calculates the effective coverage center and range for each cell
    based on the signal dominance threshold points.

    Parameters:
    cells_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing cell information, including directionality.
    grid_sdf (pyspark.sql.DataFrame): A Spark DataFrame containing grid used for calculating signal dominance.

    Returns:
    pyspark.sql.DataFrame: A Spark DataFrame with the effective coverage information for each cell, including the
                        coverage center and effective range. The DataFrame excludes intermediate columns used
                        during the calculation.
    """
    # omnidirectional cells
    cells_omni_sdf = cells_sdf.filter(F.col(ColNames.directionality) == 0)

    if cells_omni_sdf.rdd.isEmpty():
        cells_omni_sdf = self.spark.createDataFrame([], cells_sdf.schema)
    else:
        cells_omni_sdf = self.get_signal_dominance_threshold_point(cells_omni_sdf, grid_sdf, "omni")

        cells_omni_sdf = cells_omni_sdf.withColumn("coverage_center", F.col("geometry")).withColumn(
            "coverage_effective_range", STF.ST_Distance(F.col("coverage_center"), F.col("omni"))
        )
    cells_omni_sdf.cache()
    cells_omni_sdf.count()

    # directional cells
    cells_directional_sdf = cells_sdf.filter(F.col(ColNames.directionality) == 1)

    if cells_directional_sdf.rdd.isEmpty():
        cells_directional_sdf = self.spark.createDataFrame([], cells_sdf.schema)
    else:
        cells_directional_sdf = self.get_signal_dominance_threshold_point(
            cells_directional_sdf, grid_sdf, "directional_front"
        )

        cells_directional_sdf.cache()
        cells_directional_sdf.count()

        cells_directional_sdf = self.get_signal_dominance_threshold_point(
            cells_directional_sdf, grid_sdf, "directional_back"
        )

        cells_directional_sdf = cells_directional_sdf.withColumn(
            "coverage_center",
            STF.ST_LineInterpolatePoint(
                STF.ST_MakeLine(
                    cells_directional_sdf["directional_front"], cells_directional_sdf["directional_back"]
                ),
                0.5,
            ),
        )
        cells_directional_sdf = cells_directional_sdf.withColumn(
            "coverage_effective_range",
            STF.ST_Distance(cells_directional_sdf["coverage_center"], cells_directional_sdf["directional_front"]),
        )

    cells_sdf = cells_omni_sdf.unionByName(cells_directional_sdf, allowMissingColumns=True)

    return cells_sdf.drop("omni", "directional_front", "directional_back")

calculate_horizontal_angle_power_adjustment(sdf) staticmethod

Adjusts the signal strength of each cell in the input DataFrame based on the horizontal angle.

This function calculates the azimuth angle between each cell and a reference point, projects the data to the elevation plane, and adjusts the signal strength based on the relative azimuth angle and the distance to the cell. The adjustment is calculated using a normal distribution model of signal strength.

Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R

Parameters:

Name Type Description Default
sdf DataFrame

A Spark DataFrame

required

Returns:

Name Type Description
DataFrame DataFrame

The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
@staticmethod
def calculate_horizontal_angle_power_adjustment(sdf: DataFrame) -> DataFrame:
    """
    Adjusts the signal strength of each cell in the input DataFrame based on the horizontal angle.

    This function calculates the azimuth angle between each cell and a reference point,
    projects the data to the elevation plane, and adjusts the signal strength based on the
    relative azimuth angle and the distance to the cell. The adjustment is calculated using
    a normal distribution model of signal strength.

    Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R

    Args:
        sdf (DataFrame): A Spark DataFrame

    Returns:
        DataFrame: The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped.
    """

    # TODO: simplify math in this function by using Sedona built in spatial methods
    sdf = sdf.withColumn(
        "theta_azim",
        (
            90
            - F.degrees(
                (
                    F.atan2(
                        STF.ST_Y(F.col(ColNames.joined_geometry)) - STF.ST_Y(F.col(ColNames.geometry)),
                        STF.ST_X(F.col(ColNames.joined_geometry)) - STF.ST_X(F.col(ColNames.geometry)),
                    )
                )
            )
        ),
    )
    sdf = sdf.withColumn(
        "theta_azim",
        F.when(F.col("theta_azim") < 0, F.col("theta_azim") + 360).otherwise(F.col("theta_azim")),
    )
    sdf = sdf.withColumn("azim", (F.col("theta_azim") - F.col(ColNames.azimuth_angle)) % 360)
    sdf = sdf.withColumn(
        "azim",
        F.when(F.col("azim") > 180, F.col("azim") - 360).otherwise(
            F.when(F.col("azim") < -180, F.col("azim") + 360).otherwise(F.col("azim"))
        ),
    )
    sdf = sdf.withColumn("a", F.sin(F.radians(F.col("azim"))) * F.col(ColNames.distance_to_cell))

    # project to elevation plane
    sdf = sdf.withColumn("b", F.cos(F.radians(F.col("azim"))) * F.col(ColNames.distance_to_cell))
    sdf = sdf.withColumn("c", STF.ST_Z(ColNames.geometry) - STF.ST_Z(ColNames.joined_geometry))

    sdf = sdf.withColumn("d", F.sqrt(F.col("b") ** 2 + F.col("c") ** 2))
    sdf = sdf.withColumn("lambda", F.degrees(F.atan2(F.col("c"), F.abs(F.col("b")))))
    sdf = sdf.withColumn(
        "cases",
        F.when(
            F.col("b") > 0,
            F.when(F.col(ColNames.elevation_angle) < F.col("lambda"), F.lit(1)).otherwise(F.lit(2)),
        ).otherwise(F.when(F.col("lambda") + F.col(ColNames.elevation_angle) < 90, F.lit(3)).otherwise(F.lit(4))),
    )

    sdf = sdf.withColumn(
        "e",
        F.when(
            F.col("cases") == 1,
            F.cos(F.radians(F.col("lambda") - F.col(ColNames.elevation_angle))) * F.col("d"),
        )
        .when(
            F.col("cases") == 2,
            F.cos(F.radians(F.col(ColNames.elevation_angle) - F.col("lambda"))) * F.col("d"),
        )
        .when(
            F.col("cases") == 3,
            -F.cos(F.radians(F.col("lambda") + F.col(ColNames.elevation_angle))) * F.col("d"),
        )
        .otherwise(F.cos(F.radians(180 - F.col("lambda") - F.col(ColNames.elevation_angle))) * F.col("d")),
    )

    sdf = sdf.withColumn("azim2", F.degrees(F.atan2(F.col("a"), F.col("e"))))

    # finally get power adjustments
    sdf = CellFootprintEstimation.norm_dBloss_spark(
        sdf, "azim2", "sd_azimuth", ColNames.azimuth_signal_strength_back_loss
    )

    sdf = sdf.withColumn("signal_strength", F.col("signal_strength") + F.col("normalized_dBloss"))

    # cleanup
    sdf = sdf.drop(
        "theta_azim",
        "azim",
        "a",
        "b",
        "c",
        "d",
        "_lambda",
        "cases",
        "e",
        "azim2",
        "sd_azimuth",
        "normalized_dBloss",
    )

    return sdf

calculate_intersection_groups(sdf) staticmethod

Calculates the cell intersection groups based on cell footprints overlaps over grid tiles.

Parameters: sdf (DataFrame): A Spark DataFrame containing the signal dominance data.

Returns: DataFrame: A DataFrame with the intersection groups.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
@staticmethod
def calculate_intersection_groups(sdf: DataFrame) -> DataFrame:
    """
    Calculates the cell intersection groups based on cell footprints overlaps
    over grid tiles.

    Parameters:
    sdf (DataFrame): A Spark DataFrame containing the signal dominance data.

    Returns:
    DataFrame: A DataFrame with the intersection groups.
    """
    intersections_sdf = (
        sdf.groupBy(
            F.col(ColNames.year),
            F.col(ColNames.month),
            F.col(ColNames.day),
            F.col(ColNames.grid_id),
        )
        .agg(F.array_sort(F.collect_set(ColNames.cell_id)).alias(ColNames.cells))
        .select(ColNames.cells, ColNames.year, ColNames.month, ColNames.day)
    )

    intersections_sdf = intersections_sdf.drop_duplicates(
        [ColNames.year, ColNames.month, ColNames.day, ColNames.cells]
    )
    intersections_sdf = intersections_sdf.withColumn(ColNames.group_size, F.size(F.col(ColNames.cells)))
    intersections_sdf = intersections_sdf.filter(F.col(ColNames.group_size) > 1)

    return intersections_sdf

calculate_signal_dominance(cell_grid_gdf, do_elevation_angle_adjustments, do_azimuth_angle_adjustments)

Calculates the signal dominance for each cell in a grid DataFrame, optionally adjusting for elevation and azimuth angles.

This function performs a series of adjustments on the signal strength of each cell in the provided grid DataFrame to calculate the signal dominance. The adjustments include distance power loss, horizontal angle power adjustment (azimuth), and vertical angle power adjustment (elevation), based on the provided flags. Finally, it converts the adjusted signal strength into signal dominance using a logistic function.

Parameters:

Name Type Description Default
cell_grid_gdf GeoDataFrame

A GeoDataFrame containing the cell grid data.

required
do_elevation_angle_adjustments bool

Flag to indicate whether to perform elevation angle adjustments.

required
do_azimuth_angle_adjustments bool

Flag to indicate whether to perform azimuth angle adjustments.

required

Returns:

Name Type Description
GeoDataFrame

The input GeoDataFrame with an additional column for signal dominance, after applying the specified adjustments.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
def calculate_signal_dominance(self, cell_grid_gdf, do_elevation_angle_adjustments, do_azimuth_angle_adjustments):
    """
    Calculates the signal dominance for each cell in a grid DataFrame, optionally adjusting for elevation and azimuth angles.

    This function performs a series of adjustments on the signal strength of each cell in the provided grid DataFrame to calculate the signal dominance. The adjustments include distance power loss, horizontal angle power adjustment (azimuth), and vertical angle power adjustment (elevation), based on the provided flags. Finally, it converts the adjusted signal strength into signal dominance using a logistic function.

    Parameters:
        cell_grid_gdf (GeoDataFrame): A GeoDataFrame containing the cell grid data.
        do_elevation_angle_adjustments (bool): Flag to indicate whether to perform elevation angle adjustments.
        do_azimuth_angle_adjustments (bool): Flag to indicate whether to perform azimuth angle adjustments.

    Returns:
        GeoDataFrame: The input GeoDataFrame with an additional column for signal dominance, after applying the specified adjustments.
    """

    # calculate distance power loss
    cell_grid_gdf = self.calculate_distance_power_loss(cell_grid_gdf)

    # calculate horizontal angle power adjustment
    if do_azimuth_angle_adjustments:

        cell_grid_gdf_directional = cell_grid_gdf.filter(F.col(ColNames.directionality) == 1)

        cell_grid_gdf_directional = self.join_sd_mapping(
            cell_grid_gdf_directional,
            self.sd_azimuth_mapping_sdf,
            ColNames.horizontal_beam_width,
            ColNames.azimuth_signal_strength_back_loss,
            "sd_azimuth",
        )
        cell_grid_gdf_directional = self.calculate_horizontal_angle_power_adjustment(cell_grid_gdf_directional)

        cell_grid_gdf = cell_grid_gdf_directional.unionByName(
            cell_grid_gdf.where(F.col(ColNames.directionality) == 0),
            allowMissingColumns=True,
        )

    # calculate vertical angle power adjustment
    if do_elevation_angle_adjustments:

        cell_grid_gdf_directional = cell_grid_gdf.filter(F.col(ColNames.directionality) == 1)

        cell_grid_gdf_directional = self.join_sd_mapping(
            cell_grid_gdf_directional,
            self.sd_elevation_mapping_sdf,
            ColNames.vertical_beam_width,
            ColNames.elevation_signal_strength_back_loss,
            "sd_elevation",
        )

        cell_grid_gdf_directional = self.calculate_vertical_angle_power_adjustment(cell_grid_gdf_directional)
        cell_grid_gdf = cell_grid_gdf_directional.unionByName(
            cell_grid_gdf.where(F.col(ColNames.directionality) == 0),
            allowMissingColumns=True,
        )

    # calculate signal dominance
    cell_grid_gdf = self.signal_strength_to_signal_dominance(
        cell_grid_gdf, self.logistic_function_steepness, self.logistic_function_midpoint
    )

    return cell_grid_gdf

calculate_vertical_angle_power_adjustment(sdf) staticmethod

Adjusts the signal strength of each cell in the input DataFrame based on the vertical angle.

This function calculates the elevation angle between each cell and a reference point, and adjusts the signal strength based on the relative elevation angle and the distance to the cell. The adjustment is calculated using a normal distribution model of signal strength.

Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R

Parameters:

Name Type Description Default
sdf DataFrame

A Spark DataFrame

required

Returns:

Name Type Description
DataFrame DataFrame

The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
@staticmethod
def calculate_vertical_angle_power_adjustment(sdf: DataFrame) -> DataFrame:
    """
    Adjusts the signal strength of each cell in the input DataFrame based on the vertical angle.

    This function calculates the elevation angle between each cell and a reference point,
    and adjusts the signal strength based on the relative elevation angle and the distance to the cell.
    The adjustment is calculated using a normal distribution model of signal strength.

    Based on https://github.com/MobilePhoneESSnetBigData/mobloc/blob/master/R/signal_strength.R

    Args:
        sdf (DataFrame): A Spark DataFrame

    Returns:
        DataFrame: The input DataFrame with the 'signal_strength' column adjusted and intermediate columns dropped.
    """

    sdf = sdf.withColumn(
        "gamma_elev",
        F.degrees(
            F.atan2(
                STF.ST_Z(ColNames.geometry) - STF.ST_Z(ColNames.joined_geometry),
                F.col(ColNames.distance_to_cell),
            )
        ),
    )
    sdf = sdf.withColumn("elev", (F.col("gamma_elev") - F.col(ColNames.elevation_angle)) % 360)

    sdf = sdf.withColumn(
        "elev",
        F.when(F.col("elev") > 180, F.col("elev") - 360).otherwise(
            F.when(F.col("elev") < -180, F.col("elev") + 360).otherwise(F.col("elev"))
        ),
    )

    # finally get power adjustments
    sdf = CellFootprintEstimation.norm_dBloss_spark(
        sdf, "elev", "sd_elevation", ColNames.elevation_signal_strength_back_loss
    )

    sdf = sdf.withColumn(
        ColNames.signal_strength,
        F.col(
            ColNames.signal_strength,
        )
        + F.col("normalized_dBloss"),
    )

    # cleanup
    sdf = sdf.drop("gamma_elev", "elev", "sd_elevation", "normalized_dBloss")

    return sdf

create_cell_point_geometry(sdf, use_elevation) staticmethod

Creates cell point geometry. If elevation is taken into account, set Z values from z column, otherwise to 0.

Parameters:

Name Type Description Default
sdf DataFrame

Input DataFrame.

required
use_elevation bool

Whether to use elevation.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with cell point geometry.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
@staticmethod
def create_cell_point_geometry(sdf: DataFrame, use_elevation: bool) -> DataFrame:
    """
    Creates cell point geometry.
    If elevation is taken into account, set Z values from z column, otherwise to 0.

    Args:
        sdf (DataFrame): Input DataFrame.
        use_elevation (bool): Whether to use elevation.

    Returns:
        DataFrame: DataFrame with cell point geometry.
    """
    if use_elevation:
        sdf = sdf.withColumn(
            ColNames.geometry,
            STC.ST_MakePoint(
                F.col(ColNames.longitude),
                F.col(ColNames.latitude),
                F.col(ColNames.altitude) + F.col(ColNames.antenna_height),
            ),
        )
    else:
        sdf = sdf.withColumn(
            ColNames.geometry,
            STC.ST_MakePoint(
                F.col(ColNames.longitude),
                F.col(ColNames.latitude),
                F.col(ColNames.antenna_height),
            ),
        )
    # assign crs
    sdf = sdf.withColumn(ColNames.geometry, STF.ST_SetSRID(F.col(ColNames.geometry), F.lit(4326)))

    return sdf.drop(ColNames.latitude, ColNames.longitude, ColNames.altitude, ColNames.antenna_height)

create_default_properties_df()

Creates a DataFrame with default cell properties from config dict.

Returns:

Name Type Description
DataFrame DataFrame

A DataFrame with default cell properties.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
356
357
358
359
360
361
362
363
364
365
def create_default_properties_df(self) -> DataFrame:
    """
    Creates a DataFrame with default cell properties from config dict.

    Returns:
        DataFrame: A DataFrame with default cell properties.
    """

    rows = [Row(cell_type=k, **v) for k, v in self.default_cell_properties.items()]
    return self.spark.createDataFrame(rows).withColumnRenamed("cell_type", ColNames.cell_type)

create_mapping(db_back, signal_front_back_difference_col) staticmethod

Creates a mapping between standard deviation and the angle at which the signal strength falls to 3 dB below its maximum value.

Parameters:

Name Type Description Default
db_back float

The difference in signal strength in dB between the front and back of the signal.

required

Returns:

Name Type Description
DataFrame DataFrame

A DataFrame where each row corresponds to a

DataFrame

standard deviation and contains the corresponding angle.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
@staticmethod
def create_mapping(db_back: float, signal_front_back_difference_col) -> DataFrame:
    """
    Creates a mapping between standard deviation and the angle
    at which the signal strength falls to 3 dB below its maximum value.

    Args:
        db_back (float): The difference in signal strength in dB between the front and back of the signal.

    Returns:
        DataFrame: A DataFrame where each row corresponds to a
        standard deviation and contains the corresponding angle.
    """
    idf = pd.DataFrame({"sd": np.arange(180 / 1000, 180, 180 / 1000)})
    idf["deg"] = idf["sd"].apply(CellFootprintEstimation.get_min3db, db_back=db_back)
    df = pd.DataFrame({"deg": np.arange(1, 181)})
    df["sd"] = df["deg"].apply(lambda dg: idf.loc[np.abs(idf["deg"] - dg).idxmin(), "sd"])
    df[signal_front_back_difference_col] = db_back
    return df

find_sd(beam_width, mapping) staticmethod

Finds the standard deviation corresponding to the given beam width using the provided mapping.

Parameters:

Name Type Description Default
beam_width float

The width of the beam in degrees.

required
mapping DataFrame

A DataFrame where each row corresponds to a standard deviation and contains the corresponding angle.

required

Returns:

Name Type Description
float float

The standard deviation corresponding to the given beam width.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
@staticmethod
def find_sd(beam_width: float, mapping: DataFrame) -> float:
    """
    Finds the standard deviation corresponding to the given beam width using the provided mapping.

    Args:
        beam_width (float): The width of the beam in degrees.
        mapping (DataFrame): A DataFrame where each row corresponds to a standard deviation
            and contains the corresponding angle.

    Returns:
        float: The standard deviation corresponding to the given beam width.
    """
    min_diff_index = (abs(mapping["deg"] - beam_width / 2)).idxmin()
    return float(mapping.loc[min_diff_index, "sd"])

get_angular_adjustments_sd_mapping(cells_sdf, beam_width_col, signal_front_back_difference_col, angular_adjustment_type)

Calculates standard deviations in signal strength based on beam width and front-back cell signal difference.

Parameters:

Name Type Description Default
cells_sdf DataFrame

Input DataFrame.

required
beam_width_col str

Column name for the beam width.

required
signal_front_back_difference_col str

Column name for the signal front-back difference.

required
angular_adjustment_type str

Type of angular adjustment.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with angular adjustments standard deviation mapping.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
def get_angular_adjustments_sd_mapping(
    self,
    cells_sdf: DataFrame,
    beam_width_col: str,
    signal_front_back_difference_col: str,
    angular_adjustment_type: str,
) -> DataFrame:
    """
    Calculates standard deviations in signal strength based on beam width and front-back cell signal difference.

    Args:
        cells_sdf (DataFrame): Input DataFrame.
        beam_width_col (str): Column name for the beam width.
        signal_front_back_difference_col (str): Column name for the signal front-back difference.
        angular_adjustment_type (str): Type of angular adjustment.

    Returns:
        DataFrame: DataFrame with angular adjustments standard deviation mapping.
    """

    sd_mappings = CellFootprintEstimation.get_sd_to_signal_back_loss_mappings(
        cells_sdf, signal_front_back_difference_col
    )
    beam_widths_diff = (
        cells_sdf.select(F.col(beam_width_col), F.col(signal_front_back_difference_col))
        .where(F.col(ColNames.directionality) == 1)
        .distinct()
    )
    beam_widths_diff = [row.asDict() for row in beam_widths_diff.collect()]

    beam_sds = []
    for item in beam_widths_diff:
        item[f"sd_{angular_adjustment_type}"] = self.find_sd(
            item[beam_width_col],
            sd_mappings[sd_mappings[signal_front_back_difference_col] == item[signal_front_back_difference_col]],
        )
        beam_sds.append(item)

    beam_sd_sdf = self.spark.createDataFrame(beam_sds)

    return beam_sd_sdf

get_min3db(sd, db_back) staticmethod

Finds the angle at which the signal strength falls to 3 dB below its maximum value.

Parameters:

Name Type Description Default
sd float

The standard deviation of the normal distribution modeling the signal strength.

required
db_back float

The difference in signal strength in dB between the front and back of the signal.

required

Returns:

Name Type Description
float float

The angle at which the signal strength falls to 3 dB below its maximum value.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@staticmethod
def get_min3db(sd: float, db_back: float) -> float:
    """
    Finds the angle at which the signal strength falls to 3 dB below its maximum value.

    Args:
        sd (float): The standard deviation of the normal distribution modeling the signal strength.
        db_back (float): The difference in signal strength in dB between the front and back of the signal.

    Returns:
        float: The angle at which the signal strength falls to 3 dB below its maximum value.
    """
    df = pd.DataFrame({"a": np.linspace(0, 180, 720)})
    df["dbLoss"] = CellFootprintEstimation.norm_dBloss(df["a"], db_back=db_back, sd=sd)
    return df.loc[np.abs(-3 - df["dbLoss"]).idxmin(), "a"]

get_sd_to_signal_back_loss_mappings(cells_sdf, signal_front_back_difference_col) staticmethod

Generates a DataFrame with mapping of signal strength standard deviation for each elevation/azimuth angle degree.

Parameters: cells_sdf (DataFrame): A Spark DataFrame containing information about the cells. signal_front_back_difference_col (str): The name of the column that contains the difference in signal strength between the front and back of the cell.

Returns: DataFrame: A pandas DataFrame with standard deviation mappings.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
@staticmethod
def get_sd_to_signal_back_loss_mappings(cells_sdf: DataFrame, signal_front_back_difference_col: str) -> DataFrame:
    """
    Generates a DataFrame with mapping of signal strength standard deviation for each
        elevation/azimuth angle degree.

    Parameters:
    cells_sdf (DataFrame): A Spark DataFrame containing information about the cells.
    signal_front_back_difference_col (str): The name of the column that contains the difference
        in signal strength between
    the front and back of the cell.

    Returns:
    DataFrame: A pandas DataFrame with standard deviation mappings.

    """
    db_back_diffs = (
        cells_sdf.select(F.col(signal_front_back_difference_col))
        .where(F.col(ColNames.directionality) == 1)
        .distinct()
    )
    db_back_diffs = [row.asDict()[signal_front_back_difference_col] for row in db_back_diffs.collect()]
    mappings = [
        CellFootprintEstimation.create_mapping(item, signal_front_back_difference_col) for item in db_back_diffs
    ]

    return pd.concat(mappings)

get_signal_dominance_threshold_point(cells_sdf, grid_sdf, point_type)

Calculates the signal dominance threshold points in cell maximum range.

For omnidirectional cell types, the signal dominance threshold point is calculated as the furthest point along 90 degrees azimuth direction where signal dominance is less than the threshold. For directional cells types, two signal dominance threshold points are calculated: 1. the furthest point along the directionality angle direction where signal dominance is less than the threshold 2. the furthest point opposite to the directionality angle direction where signal dominance is less than the threshold

Parameters:

Name Type Description Default
cells_sdf DataFrame

The DataFrame containing cell information.

required
grid_sdf DataFrame

The DataFrame containing grid information.

required
point_type str

The type of point to calculate the signal dominance threshold for.

required

Returns:

Name Type Description
DataFrame

The updated cells DataFrame with the signal dominance threshold point added.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
def get_signal_dominance_threshold_point(self, cells_sdf, grid_sdf, point_type):
    """
    Calculates the signal dominance threshold points in cell maximum range.

    For omnidirectional cell types, the signal dominance threshold point is calculated as
    the furthest point along 90 degrees azimuth direction where signal dominance is less than the threshold.
    For directional cells types, two signal dominance threshold points are calculated:
        1. the furthest point along the directionality angle direction where signal dominance is less than the threshold
        2. the furthest point opposite to the directionality angle direction where signal dominance is less than the threshold

    Args:
        cells_sdf (DataFrame): The DataFrame containing cell information.
        grid_sdf (DataFrame): The DataFrame containing grid information.
        point_type (str): The type of point to calculate the signal dominance threshold for.

    Returns:
        DataFrame: The updated cells DataFrame with the signal dominance threshold point added.
    """

    do_azimuth_angle_adjustments = True
    do_elevation_angle_adjustments = True

    if point_type == "directional_front":
        # Calculate range line for directional front point type
        cells_sdf = cells_sdf.withColumn(
            "range_line",
            STF.ST_MakeLine(
                "geometry",
                STC.ST_Point(
                    STF.ST_X("geometry") + cells_sdf["range"] * F.sin(F.radians(cells_sdf["azimuth_angle"])),
                    STF.ST_Y("geometry") + cells_sdf["range"] * F.cos(F.radians(cells_sdf["azimuth_angle"])),
                ),
            ),
        )

    elif point_type == "directional_back":
        # Calculate range line for directional back point type
        cells_sdf = cells_sdf.withColumn(
            "range_line",
            STF.ST_MakeLine(
                "geometry",
                STC.ST_Point(
                    STF.ST_X("geometry") + cells_sdf["range"] * F.sin(F.radians(cells_sdf["azimuth_angle"] + 180)),
                    STF.ST_Y("geometry") + cells_sdf["range"] * F.cos(F.radians(cells_sdf["azimuth_angle"] + 180)),
                ),
            ),
        )

    elif point_type == "omni":
        # Calculate range line for omni point type
        cells_sdf = cells_sdf.withColumn(
            "range_line",
            STF.ST_MakeLine(
                "geometry",
                STC.ST_Point(
                    STF.ST_X("geometry") + cells_sdf["range"] * F.sin(F.radians(F.lit(90))),
                    STF.ST_Y("geometry") + cells_sdf["range"] * F.cos(F.radians(F.lit(90))),
                ),
            ),
        )

        do_azimuth_angle_adjustments = False
        do_elevation_angle_adjustments = False

    cells_sdf = cells_sdf.withColumn("coverage_range_line_buffer", F.lit(self.coverage_range_line_buffer))

    cell_grid = self.spatial_join_within_distance(cells_sdf, grid_sdf, "range_line", "coverage_range_line_buffer")

    # calculate 3d distance and planar distance from cell id to grid ids
    cell_grid = self.calculate_cartesian_distances(cell_grid)

    cell_grid = self.calculate_signal_dominance(
        cell_grid, do_elevation_angle_adjustments, do_azimuth_angle_adjustments
    )

    cell_grid_filtered = cell_grid.filter(F.col(ColNames.signal_dominance) > self.signal_dominance_treshold)
    cell_counts = cell_grid_filtered.groupBy("cell_id").count().withColumnRenamed("count", "filtered_count")
    cell_grid_joined = cell_grid.join(cell_counts, on="cell_id", how="left").fillna(0, subset=["filtered_count"])

    # In case if desired threshold filter removes all grid tiles in given direction, keep closest grid tile
    # Otherwise keep furthest point where threshold condition meet
    window_min = Window.partitionBy("cell_id").orderBy(F.col("distance_to_cell"))
    window_max = Window.partitionBy("cell_id").orderBy(F.desc(F.col("distance_to_cell")))

    cell_grid_max = (
        cell_grid_joined.withColumn(
            "rank",
            F.when(F.col("filtered_count") == 0, F.row_number().over(window_min)).otherwise(
                F.row_number().over(window_max)
            ),
        )
        .filter(F.col("rank") == 1)
        .drop("rank", "filtered_count")
    )

    cells_sdf = cells_sdf.join(
        cell_grid_max.select("cell_id", "joined_geometry").withColumnRenamed("joined_geometry", point_type),
        "cell_id",
        "left",
    )

    return cells_sdf.drop(
        "range_line", "distance_to_cell_3d", "distance_to_cell", "signal_strength", "signal_dominance", "grid_id"
    )

impute_default_cell_properties(sdf)

Imputes default cell properties for null values in the input DataFrame using default properties for cell types from config.

Parameters:

Name Type Description Default
sdf DataFrame

Input DataFrame.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with imputed default cell properties.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def impute_default_cell_properties(self, sdf: DataFrame) -> DataFrame:
    """
    Imputes default cell properties for null values in the input DataFrame using
    default properties for cell types from config.

    Args:
        sdf (DataFrame): Input DataFrame.

    Returns:
        DataFrame: DataFrame with imputed default cell properties.
    """
    default_properties_df = self.create_default_properties_df()

    # add default prefix to the columns of default_properties_df
    default_properties_df = default_properties_df.select(
        [F.col(col).alias(f"default_{col}") for col in default_properties_df.columns]
    )

    # assign default cell type to cell types not present in config
    sdf = sdf.withColumn(
        ColNames.cell_type,
        F.when(
            F.col(ColNames.cell_type).isin(list(self.default_cell_properties.keys())),
            F.col(ColNames.cell_type),
        ).otherwise("default"),
    )

    # all cell types which are absent from the default_properties_df will be assigned default values
    sdf = sdf.join(
        default_properties_df,
        sdf[ColNames.cell_type] == default_properties_df[f"default_{ColNames.cell_type}"],
        how="inner",
    )
    # if orignal column is null, assign the default value
    for col in default_properties_df.columns:
        col = col.replace("default_", "")
        if col not in sdf.columns:
            sdf = sdf.withColumn(col, F.lit(None))
        sdf = sdf.withColumn(col, F.coalesce(F.col(col), F.col(f"default_{col}")))

    return sdf.drop(*default_properties_df.columns)

join_sd_mapping(sdf, sd_mapping_sdf, beam_width_col, signal_front_back_difference_col, sd_col) staticmethod

Joins DataFrame with standard deviation mapping.

Parameters:

Name Type Description Default
sdf DataFrame

Input DataFrame.

required
sd_mapping_sdf DataFrame

DataFrame with standard deviation mapping.

required
beam_width_col str

Column name for the beam width.

required
signal_front_back_difference_col str

Column name for the signal front-back difference.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame after joining with standard deviation mapping.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
@staticmethod
def join_sd_mapping(
    sdf: DataFrame,
    sd_mapping_sdf: DataFrame,
    beam_width_col: str,
    signal_front_back_difference_col: str,
    sd_col: str,
) -> DataFrame:
    """
    Joins DataFrame with standard deviation mapping.

    Args:
        sdf (DataFrame): Input DataFrame.
        sd_mapping_sdf (DataFrame): DataFrame with standard deviation mapping.
        beam_width_col (str): Column name for the beam width.
        signal_front_back_difference_col (str): Column name for the signal front-back difference.

    Returns:
        DataFrame: DataFrame after joining with standard deviation mapping.
    """

    join_condition = (F.col(f"a.{beam_width_col}") == F.col(f"b.{beam_width_col}")) & (
        F.col(f"a.{signal_front_back_difference_col}") == F.col(f"b.{signal_front_back_difference_col}")
    )

    sdf = sdf.alias("a").join(sd_mapping_sdf.alias("b"), join_condition).select(f"a.*", f"b.{sd_col}")

    return sdf

norm_dBloss(a, sd, db_back) staticmethod

Computes the loss in signal strength in dB as a function of angle from the direction of maximum signal strength.

Parameters:

Name Type Description Default
a float

The angle from the direction of maximum signal strength.

required
sd float

The standard deviation of the normal distribution modeling the signal strength.

required
db_back float

The difference in signal strength in dB between the front and back of the signal.

required

Returns:

Name Type Description
float float

The loss in signal strength in dB at the given angle.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
@staticmethod
def norm_dBloss(a: float, sd: float, db_back: float) -> float:
    """
    Computes the loss in signal strength in dB as a function of
    angle from the direction of maximum signal strength.

    Args:
        a (float): The angle from the direction of maximum signal strength.
        sd (float): The standard deviation of the normal distribution modeling the signal strength.
        db_back (float): The difference in signal strength in dB between the front and back of the signal.

    Returns:
        float: The loss in signal strength in dB at the given angle.
    """
    a = ((a + 180) % 360) - 180
    inflate = -db_back / (
        CellFootprintEstimation.normal_distribution(0, 0, sd)
        - CellFootprintEstimation.normal_distribution(180, 0, sd)
    )
    return (
        CellFootprintEstimation.normal_distribution(a, 0, sd)
        - CellFootprintEstimation.normal_distribution(0, 0, sd)
    ) * inflate

norm_dBloss_spark(sdf, angle_col, sd_col, db_back_col) staticmethod

Normalizes the dB loss in a Spark DataFrame based on the angle, standard deviation, and dB back loss.

This method performs several operations to normalize the dB loss for each row in the Spark DataFrame: 1. Normalizes the angle to a range of [-180, 180) degrees. 2. Calculates the normal distribution of the normalized angles with a mean of 0 and a standard deviation specified by sd_col. 3. Calculates the normal distribution for angles 0 and 180 degrees using precomputed values, with a mean of 0 and the same standard deviation. 4. Computes an inflation factor based on the dB back loss column and the difference between the normal distributions at 0 and 180 degrees. 5. Calculates the normalized dB loss by adjusting the normal distribution of the angle with the inflation factor.

Parameters:

Name Type Description Default
sdf DataFrame

The input Spark DataFrame containing the data.

required
angle_col str

The name of the column that contains the angles to be normalized.

required
sd_col str

The name of the column that contains the standard deviation values for the normal distribution calculation.

required
db_back_col str

The name of the column in that contains the dB back loss values used to calculate the inflation factor.

required

Returns:

Name Type Description
DataFrame DataFrame

A Spark DataFrame with the normalized dB loss added and intermediate columns removed.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
@staticmethod
def norm_dBloss_spark(sdf: DataFrame, angle_col: str, sd_col: str, db_back_col: str) -> DataFrame:
    """
    Normalizes the dB loss in a Spark DataFrame based on the angle, standard deviation, and dB back loss.

    This method performs several operations to normalize the dB loss for each row in the Spark DataFrame:
    1. Normalizes the angle to a range of [-180, 180) degrees.
    2. Calculates the normal distribution of the normalized angles with a mean of 0 and a standard deviation specified by `sd_col`.
    3. Calculates the normal distribution for angles 0 and 180 degrees using precomputed values, with a mean of 0 and the same standard deviation.
    4. Computes an inflation factor based on the dB back loss column and the difference between the normal distributions at 0 and 180 degrees.
    5. Calculates the normalized dB loss by adjusting the normal distribution of the angle with the inflation factor.

    Parameters:
        sdf (DataFrame): The input Spark DataFrame containing the data.
        angle_col (str): The name of the column that contains the angles to be normalized.
        sd_col (str): The name of the column that contains the standard deviation values for the normal distribution calculation.
        db_back_col (str): The name of the column in that contains the dB back loss values used to calculate the inflation factor.

    Returns:
        DataFrame: A Spark DataFrame with the normalized dB loss added and intermediate columns removed.
    """
    # Normalizing angles

    sdf = sdf.withColumn("angle_normalized", ((F.col(angle_col) + 180) % 360) - 180)

    # Calculate the normal distribution for the normalized angles
    sdf = sdf.withColumn(
        "norm_dist_angle",
        CellFootprintEstimation.normal_distribution_col(F.col("angle_normalized"), F.lit(0), F.col(sd_col)),
    )

    # Calculate the normal distribution for 0 and 180 degrees using precomputed values
    n_dist_0 = CellFootprintEstimation.normal_distribution_col(F.lit(0), F.lit(0), F.col(sd_col))
    n_dist_180 = CellFootprintEstimation.normal_distribution_col(F.lit(180), F.lit(0), F.col(sd_col))

    # Calculate the inflated factor
    sdf = sdf.withColumn("inflate", -F.col(db_back_col) / (n_dist_0 - n_dist_180))

    # Calculate the normalized dB loss
    sdf = sdf.withColumn("normalized_dBloss", (F.col("norm_dist_angle") - n_dist_0) * F.col("inflate"))

    return sdf.drop("angle_normalized", "norm_dist_angle", "inflate")

normal_distribution(x, mean, sd) staticmethod

Computes the value of the normal distribution with the given mean and standard deviation at the given point.

Parameters:

Name Type Description Default
x float

The point at which to evaluate the normal distribution.

required
mean float

The mean of the normal distribution.

required
sd float

The standard deviation of the normal distribution.

required
return_type str

The desired return type, either 'np_array' or 'list'.

required

Returns:

Type Description
Union[array, list]

np.array or list: The value of the normal distribution at the given point,

Union[array, list]

returned as either a numpy array or a list.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
@staticmethod
def normal_distribution(x: float, mean: float, sd: float) -> Union[np.array, list]:
    """
    Computes the value of the normal distribution with the given mean
    and standard deviation at the given point.

    Args:
        x (float): The point at which to evaluate the normal distribution.
        mean (float): The mean of the normal distribution.
        sd (float): The standard deviation of the normal distribution.
        return_type (str): The desired return type, either 'np_array' or 'list'.

    Returns:
        np.array or list: The value of the normal distribution at the given point,
        returned as either a numpy array or a list.
    """
    n_dist = (1.0 / (sqrt(2.0 * pi) * sd)) * np.exp(-0.5 * ((x - mean) / sd) ** 2)

    return n_dist

normal_distribution_col(x_col, mean_col, sd_col) staticmethod

Computes the value of the normal distribution for each row in a DataFrame based on the provided columns for the point, mean, and standard deviation.

This function applies the normal distribution formula to each row of the DataFrame using the specified columns for the point (x), mean, and standard deviation (sd). The normal distribution formula used is:

f(x) = (1 / (sqrt(2 * pi) * sd)) * exp(-0.5 * ((x - mean) / sd)^2)

where x is the value at which the normal distribution is evaluated, mean is the mean of the distribution, and sd is the standard deviation.

Parameters:

Name Type Description Default
x_col Column

A Spark DataFrame column representing the point at which to evaluate the normal distribution.

required
mean_col Column

A Spark DataFrame column representing the mean of the normal distribution.

required
sd_col Column

A Spark DataFrame column representing the standard deviation of the normal distribution.

required

Returns:

Name Type Description
Column Column

A Spark DataFrame column with the computed normal distribution values for each row.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
@staticmethod
def normal_distribution_col(x_col: Column, mean_col: Column, sd_col: Column) -> Column:
    """
    Computes the value of the normal distribution for each row in a DataFrame based on
    the provided columns for the point, mean, and standard deviation.

    This function applies the normal distribution formula to each row of the DataFrame using
    the specified columns for the point (x), mean, and standard deviation (sd).
    The normal distribution formula used is:

        f(x) = (1 / (sqrt(2 * pi) * sd)) * exp(-0.5 * ((x - mean) / sd)^2)

    where `x` is the value at which the normal distribution is evaluated,
    `mean` is the mean of the distribution, and `sd` is the standard deviation.

    Parameters:
        x_col (Column): A Spark DataFrame column representing the point at which to evaluate the normal distribution.
        mean_col (Column): A Spark DataFrame column representing the mean of the normal distribution.
        sd_col (Column): A Spark DataFrame column representing the standard deviation of the normal distribution.

    Returns:
        Column: A Spark DataFrame column with the computed normal distribution values for each row.
    """
    return (1.0 / (F.sqrt(2.0 * F.lit(pi)) * sd_col)) * F.exp(-0.5 * ((x_col - mean_col) / sd_col) ** 2)

prune_max_cells_per_grid_tile(sdf, max_cells_per_grid_tile) staticmethod

Prunes rows from the DataFrame exceeding the maximum number of cells allowed per grid tile.

The rows are ordered by signal dominance in descending order, and only the top 'max_cells_per_grid_tile' rows are kept for each grid tile.

Parameters: sdf (DataFrame): A Spark DataFrame containing the signal dominance data. max_cells_per_grid_tile (int): The maximum number of cells allowed per grid tile.

Returns: DataFrame: A DataFrame with rows exceeding the maximum number of cells per grid tile removed.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
@staticmethod
def prune_max_cells_per_grid_tile(sdf: DataFrame, max_cells_per_grid_tile: int) -> DataFrame:
    """
    Prunes rows from the DataFrame exceeding the maximum number of cells allowed per grid tile.

    The rows are ordered by signal dominance in descending order,
    and only the top 'max_cells_per_grid_tile' rows are kept for each grid tile.

    Parameters:
    sdf (DataFrame): A Spark DataFrame containing the signal dominance data.
    max_cells_per_grid_tile (int): The maximum number of cells allowed per grid tile.

    Returns:
    DataFrame: A DataFrame with rows exceeding the maximum number of cells per grid tile removed.
    """
    window = Window.partitionBy(ColNames.grid_id).orderBy(F.desc(ColNames.signal_dominance))

    sdf = sdf.withColumn("row_number", F.row_number().over(window))
    sdf = sdf.filter(F.col("row_number") <= max_cells_per_grid_tile)
    sdf = sdf.drop("row_number")

    return sdf

prune_signal_difference_from_best(sdf, difference_threshold) staticmethod

Prunes rows from the DataFrame based on a threshold of signal dominance difference.

The rows are ordered by signal dominance in descending order, and only the rows where the difference in signal dominance from the maximum is less than the threshold are kept for each grid tile.

Parameters: sdf (DataFrame): A Spark DataFrame containing the signal dominance data. threshold (float): The threshold for signal dominance difference in percentage.

Returns: DataFrame: A DataFrame with rows pruned based on the signal dominance difference threshold.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
@staticmethod
def prune_signal_difference_from_best(sdf: DataFrame, difference_threshold: float) -> DataFrame:
    """
    Prunes rows from the DataFrame based on a threshold of signal dominance difference.

    The rows are ordered by signal dominance in descending order, and only the rows where the difference
    in signal dominance from the maximum is less than the threshold are kept for each grid tile.

    Parameters:
    sdf (DataFrame): A Spark DataFrame containing the signal dominance data.
    threshold (float): The threshold for signal dominance difference in percentage.

    Returns:
    DataFrame: A DataFrame with rows pruned based on the signal dominance difference threshold.
    """
    window = Window.partitionBy(ColNames.grid_id).orderBy(F.desc(ColNames.signal_dominance))

    sdf = sdf.withColumn("row_number", F.row_number().over(window))

    sdf = sdf.withColumn("max_signal_dominance", F.first(ColNames.signal_dominance).over(window))
    sdf = sdf.withColumn(
        "signal_dominance_diff_percentage",
        (sdf["max_signal_dominance"] - sdf[ColNames.signal_dominance]) / sdf["max_signal_dominance"] * 100,
    )

    sdf = sdf.filter(
        (F.col("row_number") == 1) | (F.col("signal_dominance_diff_percentage") <= difference_threshold)
    )

    sdf = sdf.drop("row_number", "max_signal_dominance", "signal_dominance_diff_percentage")

    return sdf

prune_small_signal_dominance(sdf, signal_dominance_threshold) staticmethod

Prunes rows from the DataFrame where the signal dominance is less than or equal to the provided threshold.

Parameters: sdf (DataFrame): A Spark DataFrame containing the signal dominance data. signal_dominance_threshold (float): The threshold for pruning small signal dominance values.

Returns: DataFrame: A DataFrame with rows having signal dominance less than or equal to the threshold removed.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
@staticmethod
def prune_small_signal_dominance(sdf: DataFrame, signal_dominance_threshold: float) -> DataFrame:
    """
    Prunes rows from the DataFrame where the signal dominance is less than or equal to the provided threshold.

    Parameters:
    sdf (DataFrame): A Spark DataFrame containing the signal dominance data.
    signal_dominance_threshold (float): The threshold for pruning small signal dominance values.

    Returns:
    DataFrame: A DataFrame with rows having signal dominance less than or equal to the threshold removed.
    """
    sdf = sdf.filter(F.col(ColNames.signal_dominance) > signal_dominance_threshold)
    return sdf

signal_strength_to_signal_dominance(sdf, logistic_function_steepness, logistic_function_midpoint) staticmethod

Converts signal strength to signal dominance using a logistic function. Methodology from A Bayesian approach to location estimation of mobile devices from mobile network operator data. Tennekes and Gootzen (2022).

The logistic function is defined as 1 / (1 + exp(-scale)), where scale is (signal_strength - logistic_function_midpoint) * logistic_function_steepness.

Parameters: sdf (DataFrame): SignalStrenghtDataObject Spark DataFrame. logistic_function_steepness (float): The steepness parameter for the logistic function. logistic_function_midpoint (float): The midpoint parameter for the logistic function.

Returns: DataFrame: A Spark DataFrame with the signal dominance added as a new column.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
@staticmethod
def signal_strength_to_signal_dominance(
    sdf: DataFrame,
    logistic_function_steepness: float,
    logistic_function_midpoint: float,
) -> DataFrame:
    """
    Converts signal strength to signal dominance using a logistic function.
    Methodology from A Bayesian approach to location estimation of mobile devices
    from mobile network operator data. Tennekes and Gootzen (2022).

    The logistic function is defined as 1 / (1 + exp(-scale)),
    where scale is (signal_strength - logistic_function_midpoint) * logistic_function_steepness.

    Parameters:
    sdf (DataFrame): SignalStrenghtDataObject Spark DataFrame.
    logistic_function_steepness (float): The steepness parameter for the logistic function.
    logistic_function_midpoint (float): The midpoint parameter for the logistic function.

    Returns:
    DataFrame: A Spark DataFrame with the signal dominance added as a new column.
    """
    sdf = sdf.withColumn(
        "scale",
        (F.col(ColNames.signal_strength) - logistic_function_midpoint) * logistic_function_steepness,
    )
    sdf = sdf.withColumn(ColNames.signal_dominance, 1 / (1 + F.exp(-F.col("scale"))))
    sdf = sdf.drop("scale")

    return sdf

spatial_join_within_distance(sdf_from, sdf_to, geometry_col, within_distance_col) staticmethod

Performs a spatial join within a specified distance.

Parameters:

Name Type Description Default
sdf_from DataFrame

Input DataFrame.

required
sdf_to DataFrame

DataFrame to join with.

required
within_distance_col str

Column name for the within distance.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame after performing the spatial join.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
@staticmethod
def spatial_join_within_distance(
    sdf_from: DataFrame, sdf_to: DataFrame, geometry_col: str, within_distance_col: str
) -> DataFrame:
    """
    Performs a spatial join within a specified distance.

    Args:
        sdf_from (DataFrame): Input DataFrame.
        sdf_to (DataFrame): DataFrame to join with.
        within_distance_col (str): Column name for the within distance.

    Returns:
        DataFrame: DataFrame after performing the spatial join.
    """

    sdf_merged = (
        sdf_from.alias("a")
        .join(
            sdf_to.alias("b"),
            STP.ST_Intersects(
                STF.ST_Buffer(f"a.{geometry_col}", f"a.{within_distance_col}"),
                f"b.{ColNames.joined_geometry}",
            ),
        )
        .drop(f"a.{within_distance_col}")
    )

    return sdf_merged

watt_to_dbm(sdf) staticmethod

Converts power from watt to dBm.

Parameters:

Name Type Description Default
sdf DataFrame

Input DataFrame.

required

Returns:

Name Type Description
DataFrame DataFrame

DataFrame with power converted to dBm.

Source code in multimno/components/execution/cell_footprint/cell_footprint_estimation.py
492
493
494
495
496
497
498
499
500
501
502
503
@staticmethod
def watt_to_dbm(sdf: DataFrame) -> DataFrame:
    """
    Converts power from watt to dBm.

    Args:
        sdf (DataFrame): Input DataFrame.

    Returns:
        DataFrame: DataFrame with power converted to dBm.
    """
    return sdf.withColumn(ColNames.power, 10.0 * F.log10(F.col(ColNames.power)) + 30.0)