The wrapper function to use the different method and provide a structured return value independently from the method used.

propagate_flag(flags, method = "", codelist = NULL, flag_weights = 0,
  threshold = 0.5)

Arguments

flags

A data.frame or a matrix containing the flags of the series (one column per period) without row identifiers (e.g. country code).

method

A string contains the method to to derive the flag for the aggregate. It can take the value, "hierarchy", "frequency" or "weighted".

codelist

A string or character vector defining the list of acceptable flags in case the method "hierarchy" is chosen. In case of the string equals to "estat" or "sdmx" then the predefined standard Eurostat and SDMX codelist is used, otherwise the characters in the sring will define the hierarchical order.

flag_weights

A data.frame or a matrix containing the corresponding weights of the series (one column per period) without row identifiers (e.g. country code). It has the same size and dimesion as the flags parameter.

threshold

The threshold which above the should be the waights in order the aggregate to receive a flag. Defalut value is 0.5, but can be changed to any value.

Value

propagate_flag returns a list with the same size as the number of periods (columns) in the flags parameter. In case of the methods is "hierarchy" or "frequency", then only the derived flag(s) is returned. In case of weighted it returns the flag(s) and the sum of weights if it is above the threshold, otherwise the list contains NA where the sum of weights are below the threshold.

See also

Examples

flags <- tidyr::spread(test_data[, c(1:3)], key = time, value = flags) weights <- tidyr::spread(test_data[, c(1, 3:4)], key = time, value = values) propagate_flag(flags[, c(2:ncol(flags))],"hierarchy","puebscd")
#> $`2009-01-01` #> [1] "p" #> #> $`2010-01-01` #> [1] "p" #> #> $`2011-01-01` #> [1] "p" #> #> $`2012-01-01` #> [1] "p" #> #> $`2013-01-01` #> [1] "p" #> #> $`2014-01-01` #> [1] "p" #> #> $`2015-01-01` #> [1] "p" #>
propagate_flag(flags[, c(2:ncol(flags))],"hierarchy","estat")
#> $`2009-01-01` #> [1] "e" #> #> $`2010-01-01` #> [1] "b" #> #> $`2011-01-01` #> [1] "e" #> #> $`2012-01-01` #> [1] "b" #> #> $`2013-01-01` #> [1] "b" #> #> $`2014-01-01` #> [1] "b" #> #> $`2015-01-01` #> [1] "b" #>
propagate_flag(flags[, c(2:ncol(flags))],"frequency")
#> $`2009-01-01` #> [1] "p" #> #> $`2010-01-01` #> [1] "p" #> #> $`2011-01-01` #> [1] "e" #> #> $`2012-01-01` #> [1] "e" "u" #> #> $`2013-01-01` #> [1] "u" #> #> $`2014-01-01` #> [1] "p" #> #> $`2015-01-01` #> [1] "p" #>
flags<-flags[, c(2:ncol(flags))] weights<-weights[, c(2:ncol(weights))] propagate_flag(flags,"weighted",flag_weights=weights)
#> $`2009-01-01` #> $`2009-01-01`[[1]] #> [1] NA #> #> $`2009-01-01`[[2]] #> [1] NA #> #> #> $`2010-01-01` #> $`2010-01-01`[[1]] #> [1] NA #> #> $`2010-01-01`[[2]] #> [1] NA #> #> #> $`2011-01-01` #> $`2011-01-01`[[1]] #> [1] NA #> #> $`2011-01-01`[[2]] #> [1] NA #> #> #> $`2012-01-01` #> $`2012-01-01`[[1]] #> [1] NA #> #> $`2012-01-01`[[2]] #> [1] NA #> #> #> $`2013-01-01` #> $`2013-01-01`[[1]] #> [1] NA #> #> $`2013-01-01`[[2]] #> [1] NA #> #> #> $`2014-01-01` #> $`2014-01-01`[[1]] #> [1] NA #> #> $`2014-01-01`[[2]] #> [1] NA #> #> #> $`2015-01-01` #> $`2015-01-01`[[1]] #> [1] NA #> #> $`2015-01-01`[[2]] #> [1] NA #> #>
propagate_flag(flags,"weighted",flag_weights=weights,threshold=0.1)
#> $`2009-01-01` #> $`2009-01-01`[[1]] #> [1] NA #> #> $`2009-01-01`[[2]] #> [1] NA #> #> #> $`2010-01-01` #> $`2010-01-01`[[1]] #> [1] NA #> #> $`2010-01-01`[[2]] #> [1] NA #> #> #> $`2011-01-01` #> $`2011-01-01`[[1]] #> [1] "e" #> #> $`2011-01-01`[[2]] #> [1] "0.133211654011488" #> #> #> $`2012-01-01` #> $`2012-01-01`[[1]] #> [1] "u" #> #> $`2012-01-01`[[2]] #> [1] "0.124148695828608" #> #> #> $`2013-01-01` #> $`2013-01-01`[[1]] #> [1] NA #> #> $`2013-01-01`[[2]] #> [1] NA #> #> #> $`2014-01-01` #> $`2014-01-01`[[1]] #> [1] "p" #> #> $`2014-01-01`[[2]] #> [1] "0.174097815337322" #> #> #> $`2015-01-01` #> $`2015-01-01`[[1]] #> [1] "p" #> #> $`2015-01-01`[[2]] #> [1] "0.335586943761588" #> #>