PING
0.9
Statistical data handling and processing in production environment
|
Compute the Gini index of a set of observations.
dsn
: a dataset reference with continuous observations;var
: variable of the input dataset dsn
on which the Gini index will be computed;weight
: (option) weight (frequencies), either a variable in dsn
to use to weight the values of var
, or a constant value; default: weight=1
, i.e. it is not used;method
: (option) method used to compute the Gini index; it can be: LAEKEN
, or CANONICAL
; default: LAEKEN
, i.e. the formula used for computing the Gini index (which is 100* Gini coefficient) as: gini = 100 * (( 2 * swtvarcw - swt2var ) / ( swt * swtvar ) - 1)
issorted
: (option) boolean flag (yes/no
) set when the input data is already sorted; default: issorted=no
, and the input will be sorted;lib
: (option) name of the input library; by default: empty, i.e. WORK
is used._gini_
: name of the macro variable storing the value of the Gini index.
Considering the following datasets gini10_1
:
Obs | x |
---|---|
A | 2 |
A | 2 |
A | 2 |
B | 3 |
B | 3 |
and gini10_2
;
Obs | x | w |
---|---|---|
A | 2 | 3 |
B | 3 | 2 |
both calls to the macro:
actually return the Gini index: gini=10
.
Run macro %_example_gini
for examples.
The default LAEKEN
method implements the approach of Alfons & Templ. In short, this means that the macro %gini
runs the following DATA
step over already sorted data: